A priori and a posteriori estimates of the stabilized finite element methods for the incompressible flow with slip boundary conditions arising in arteriosclerosis

被引:0
作者
Jian Li
Haibiao Zheng
Qingsong Zou
机构
[1] Shaanxi University of Science and Technology,Department of Mathematics, School of Arts and Sciences
[2] East China Normal University,School of Mathematical Sciences, Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice
[3] Sun Yat-sen University,School of Data and Computational Science and Guangdong Province Key Laboratory of Computational Science
来源
Advances in Difference Equations | / 2019卷
关键词
Stokes equations; Slip boundary condition; Variational inequality; Finite element methods; A priori error estimates; A posteriori error estimates; Numerical experiments; 35L70; 65N30; 76D06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we develop the lower order stabilized finite element methods for the incompressible flow with the slip boundary conditions of friction type whose weak solution satisfies a variational inequality. The H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$H^{1}$\end{document}-norm for the velocity and the L2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{2}$\end{document}-norm for the pressure decrease with optimal convergence order. The reliable and efficient a posteriori error estimates are also derived. Finally, numerical experiments are presented to validate the theoretical results.
引用
收藏
相关论文
共 93 条
  • [1] Ainsworth M.(1997)A posteriori error estimators for the Stokes and Oseen equations SIAM J. Numer. Anal. 34 228-245
  • [2] Oden J.T.(1984)A stable finite element for the Stokes equations Calcolo 21 337-344
  • [3] Arnold D.N.(2014)Error estimates for Stokes problem with Tresca friction condition ESAIM: M2AN 48 1413-1429
  • [4] Brezzi F.(1991)A posteriori error estimates for the Stokes problem SIAM J. Numer. Anal. 28 591-623
  • [5] Fortin M.(2003)On a free boundary problem for the Reynolds equation derived from the Stokes system with Tresca boundary conditions J. Math. Anal. Appl. 282 212-231
  • [6] Ayadi M.(2001)A finite element pressure gradient stabilization for the Stokes equations based on local projections Calcolo 38 173-199
  • [7] Baffico L.(2006)Stabilization of low-order mixed finite elements for the Stokes equations SIAM J. Numer. Anal. 44 82-101
  • [8] Goudra M.K.(1974)On the existence, uniqueness and approximation of saddle-point problems arising form Lagrange multipliers RAIRO. Anal. Numér. 8 129-151
  • [9] Sassi T.(2008)Pressure projection stabilizations for Galerkin approximations of Stokes’ and Darcy’s problem Numer. Methods Partial Differ. Equ. 24 127-143
  • [10] Bank R.E.(2004)A stabilized finite element method for the Stokes problem based on polynomial pressure projections Int. J. Numer. Methods Fluids 46 183-201