On The Approximability Of The Traveling Salesman Problem

被引:0
|
作者
Christos H. Papadimitriou*
Santosh Vempala†
机构
[1] U.C. Berkeley,Computer Science Division
[2] Massachusetts Institute of Technology,Department of Mathematics
来源
Combinatorica | 2006年 / 26卷
关键词
68Q17; 05D40;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the traveling salesman problem with triangle inequality cannot be approximated with a ratio better than \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{117}} {{116}} $$\end{document} when the edge lengths are allowed to be asymmetric and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{220}} {{219}} $$\end{document} when the edge lengths are symmetric, unless P=NP. The best previous lower bounds were \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{2805}} {{2804}} $$\end{document} and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \frac{{3813}} {{3812}} $$\end{document} respectively. The reduction is from Håstad’s maximum satisfiability of linear equations modulo 2, and is nonconstructive.
引用
收藏
页码:101 / 120
页数:19
相关论文
共 50 条
  • [21] A NOTE ON THE TRAVELING SALESMAN PROBLEM
    CHVATAL, V
    OPERATIONS RESEARCH LETTERS, 1989, 8 (02) : 77 - 78
  • [22] AN ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM
    LITTLE, JDC
    MURTY, KG
    SWEENEY, DW
    KAREL, C
    OPERATIONS RESEARCH, 1963, 11 (06) : 972 - 989
  • [23] NOTE ON TRAVELING SALESMAN PROBLEM
    JONES, L
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1977, 32 (01) : 220 - 222
  • [24] Linearity in the traveling salesman problem
    Colletti, BW
    Barnes, JW
    APPLIED MATHEMATICS LETTERS, 2000, 13 (03) : 27 - 32
  • [25] Colored Traveling Salesman Problem
    Li, Jun
    Zhou, MengChu
    Sun, Qirui
    Dai, Xianzhong
    Yu, Xiaolong
    IEEE TRANSACTIONS ON CYBERNETICS, 2015, 45 (11) : 2390 - 2401
  • [26] DIRECTED TRAVELING SALESMAN PROBLEM
    CHAKRABARTI, BK
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (07): : 1273 - 1275
  • [27] Risky traveling salesman problem
    Papadakos, Nikolaos
    Tzallas-Regas, George
    Rustem, Berc
    Thoms, Joanne
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2011, 212 (01) : 69 - 73
  • [28] Traveling salesman problem of segments
    Xu, JH
    Yang, Y
    Lin, ZY
    COMPUTING AND COMBINATORICS, PROCEEDINGS, 2003, 2697 : 40 - 49
  • [29] A RELATIVISTIC TRAVELING SALESMAN PROBLEM
    OKEEFE, R
    AMERICAN JOURNAL OF PHYSICS, 1984, 52 (06) : 565 - 565
  • [30] Pyramidal traveling salesman problem
    Baki, MF
    Kabadi, SN
    COMPUTERS & OPERATIONS RESEARCH, 1999, 26 (04) : 353 - 369