共 31 条
[21]
Local and 2-Local 12\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\frac{1}{2}$$\end{document}-Derivations on Finite-Dimensional Lie Algebras
[J].
Results in Mathematics,
2024, 79 (5)
[22]
On Classification of (n+5)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(n+5)$$\end{document}-Dimensional Nilpotent n-Lie Algebras of Class Two
[J].
Bulletin of the Iranian Mathematical Society,
2019, 45 (4)
:939-949
[23]
Geodesics and Shortest Arcs of Some Sub-Riemannian Metrics on the Lie Groups \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \operatorname{SU}(1,1)\times $\end{document} and \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$ \operatorname{SO}_{0}(2,1)\times $\end{document} with Three-Dimensional Generating Distributions
[J].
Siberian Mathematical Journal,
2024, 65 (2)
:295-315
[24]
Lie algebra K5\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathcal {K}_{5}$$\end{document} and 3-variable Laguerre–Hermite polynomials
[J].
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas,
2019, 113 (2)
:831-843
[25]
Recognizing Simple K4-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$K_4-$$\end{document}Groups by Few Special Conjugacy Class Sizes
[J].
Bulletin of the Malaysian Mathematical Sciences Society,
2015, 38 (1)
:51-72
[26]
On Kostant’s weight q-multiplicity formula for sl4(C)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\mathfrak {sl}_{4}(\mathbb {C})$$\end{document}
[J].
Applicable Algebra in Engineering, Communication and Computing,
2022, 33 (4)
:353-418
[27]
On the construction of Lie-algebras of type E6(K)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$E_6(K)$$\end{document} for fields K of characteristic two
[J].
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry,
2017, 58 (3)
:529-534
[28]
Lie algebra G(0,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\mathcal {G}}(0, 1)$$\end{document} and 3-variable 2-parameter Hermite polynomials
[J].
Afrika Matematika,
2019, 30 (1-2)
:231-246
[29]
Classification on irreducible Whittaker modules over quantum group \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${U_q}\left( {{\mathfrak{s}\mathfrak{l}_3},\,{\rm{\Lambda }}} \right)$$\end{document}
[J].
Frontiers of Mathematics in China,
2021, 16 (4)
:1089-1097
[30]
Maximal subalgebras in so(2,1)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\mathfrak {s}}}{{\mathfrak {o}}}(2,1)$$\end{document}, addition theorems and Bessel–Clifford functions
[J].
The Journal of Analysis,
2023, 31 (1)
:719-732