Simple ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie Algebras and 4-Dimensional ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie Algebras Over C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}

被引:0
作者
Yin Chen
Runxuan Zhang
机构
[1] Northeast Normal University,School of Mathematics and Statistics
关键词
-Lie algebra; Simple ; -Lie algebra; -Jacobi identity; Generalization of Lie algebra; 17B60; 17A30;
D O I
10.1007/s40840-015-0120-6
中图分类号
学科分类号
摘要
In this paper, we study simple ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie algebras and 4-dimensional ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie algebras over the field of complex numbers. We provide an approach to classify all 4-dimensional non-Lie complex ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie algebras. We prove that any non-Lie finite-dimensional simple ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie algebra has dimension 3. A complete list of all non-Lie complex simple ω\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document}-Lie algebras is also derived.
引用
收藏
页码:1377 / 1390
页数:13
相关论文
共 31 条
[21]   Local and 2-Local 12\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{1}{2}$$\end{document}-Derivations on Finite-Dimensional Lie Algebras [J].
Abror Khudoyberdiyev ;
Bakhtiyor Yusupov .
Results in Mathematics, 2024, 79 (5)
[22]   On Classification of (n+5)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(n+5)$$\end{document}-Dimensional Nilpotent n-Lie Algebras of Class Two [J].
Zahra Hoseini ;
Farshid Saeedi ;
Hamid Darabi .
Bulletin of the Iranian Mathematical Society, 2019, 45 (4) :939-949
[24]   Lie algebra K5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal {K}_{5}$$\end{document} and 3-variable Laguerre–Hermite polynomials [J].
Subuhi Khan ;
Mahvish Ali .
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 (2) :831-843
[25]   Recognizing Simple K4-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K_4-$$\end{document}Groups by Few Special Conjugacy Class Sizes [J].
Yanheng Chen ;
Guiyun Chen ;
Jinbao Li .
Bulletin of the Malaysian Mathematical Sciences Society, 2015, 38 (1) :51-72
[26]   On Kostant’s weight q-multiplicity formula for sl4(C)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak {sl}_{4}(\mathbb {C})$$\end{document} [J].
Rebecca E. Garcia ;
Pamela E. Harris ;
Marissa Loving ;
Lucy Martinez ;
David Melendez ;
Joseph Rennie ;
Gordon Rojas Kirby ;
Daniel Tinoco .
Applicable Algebra in Engineering, Communication and Computing, 2022, 33 (4) :353-418
[27]   On the construction of Lie-algebras of type E6(K)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$E_6(K)$$\end{document} for fields K of characteristic two [J].
Shuaa Al-dhufeeri ;
Mashhour Bani Ata .
Beiträge zur Algebra und Geometrie / Contributions to Algebra and Geometry, 2017, 58 (3) :529-534
[29]   Classification on irreducible Whittaker modules over quantum group \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${U_q}\left( {{\mathfrak{s}\mathfrak{l}_3},\,{\rm{\Lambda }}} \right)$$\end{document} [J].
Limeng Xia ;
Xiangqian Guo ;
Jiao Zhang .
Frontiers of Mathematics in China, 2021, 16 (4) :1089-1097
[30]   Maximal subalgebras in so(2,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathfrak {s}}}{{\mathfrak {o}}}(2,1)$$\end{document}, addition theorems and Bessel–Clifford functions [J].
I. A. Shilin ;
J. Choi .
The Journal of Analysis, 2023, 31 (1) :719-732