New bounds on the unconstrained quadratic integer programming problem

被引:0
|
作者
G. D. Halikias
I. M. Jaimoukha
U. Malik
S. K. Gungah
机构
[1] City University,School of Engineering and Mathematical Sciences
[2] Imperial College,Control and Power Group, Department of Electrical and Electronic Engineering
[3] Imperial College,Department of Electrical and Electronic Engineering
来源
Journal of Global Optimization | 2007年 / 39卷
关键词
Quadratic integer programming; Semidefinite relaxation; Zonotope; Hyperplane arrangements;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the maximization \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma = \max\{x^{T}\!Ax : x\in \{-1, 1\}^n\}$$\end{document} for a given symmetric \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\in\mathcal{R}^{n\times n}$$\end{document}. It was shown recently, using properties of zonotopes and hyperplane arrangements, that in the special case that A has a small rank, so that A = VVT where \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V\in\mathcal{R}^{n\times m}$$\end{document} with m < n, then there exists a polynomial time algorithm (polynomial in n for a given m) to solve the problem \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max\{x^TV V^Tx : x\in \{-1, 1\}^n\}$$\end{document}. In this paper, we use this result, as well as a spectral decomposition of A to obtain a sequence of non-increasing upper bounds on γ with no constraints on the rank of A. We also give easily computable necessary and sufficient conditions for the absence of a gap between the solution and its upper bound. Finally, we incorporate the semidefinite relaxation upper bound into our scheme and give an illustrative example.
引用
收藏
页码:543 / 554
页数:11
相关论文
共 50 条
  • [31] New semidefinite relaxations for a class of complex quadratic programming problems
    Xu, Yingzhe
    Lu, Cheng
    Deng, Zhibin
    Liu, Ya-Feng
    JOURNAL OF GLOBAL OPTIMIZATION, 2023, 87 (01) : 255 - 275
  • [32] New semidefinite relaxations for a class of complex quadratic programming problems
    Yingzhe Xu
    Cheng Lu
    Zhibin Deng
    Ya-Feng Liu
    Journal of Global Optimization, 2023, 87 : 255 - 275
  • [33] An improved lower bound and approximation algorithm for binary constrained quadratic programming problem
    Lu, Cheng
    Wang, Zhenbo
    Xing, Wenxun
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 48 (03) : 497 - 508
  • [34] QUADRATIC MATRIX PROGRAMMING
    Beck, Amir
    SIAM JOURNAL ON OPTIMIZATION, 2007, 17 (04) : 1224 - 1238
  • [35] New semidefinite programming relaxations for box constrained quadratic program
    XIA Yong
    Science China(Mathematics), 2013, 56 (04) : 874 - 883
  • [36] A NEW GLOBAL ALGORITHM FOR HOMOGENEOUS COMPLEX QUADRATIC PROGRAMMING PROBLEMS AND APPLICATIONS
    Xu, Yingzhe
    Xut, Jintao
    Lu, Cheng
    Fang, Shu-Cherng
    Deng, Zhibin
    PACIFIC JOURNAL OF OPTIMIZATION, 2024, 20 (04): : 667 - 682
  • [37] Conic approximation to nonconvex quadratic programming with convex quadratic constraints
    Deng, Zhibin
    Fang, Shu-Cherng
    Jin, Qingwei
    Lu, Cheng
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (03) : 459 - 478
  • [38] Quadratic convex reformulations for a class of complex quadratic programming problems
    Lu, Cheng
    Kang, Gaojian
    Qu, Guangtai
    Deng, Zhibin
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 91 (01) : 125 - 144
  • [39] Invariants of SDP exactness in quadratic programming
    Lindberg, Julia
    Rodriguez, Jose Israel
    JOURNAL OF SYMBOLIC COMPUTATION, 2024, 122
  • [40] On duality gap in binary quadratic programming
    Sun, X. L.
    Liu, C. L.
    Li, D.
    Gao, J. J.
    JOURNAL OF GLOBAL OPTIMIZATION, 2012, 53 (02) : 255 - 269