On Hardy q-inequalities

被引:0
作者
Lech Maligranda
Ryskul Oinarov
Lars-Erik Persson
机构
[1] Luleå University of Technology,Department of Engineering Sciences and Mathematics
[2] L. N. Gumilyev Eurasian National University,undefined
[3] Narvik University College,undefined
来源
Czechoslovak Mathematical Journal | 2014年 / 64卷
关键词
inequality; Hardy type inequality; Hardy operator; Riemann-Liouville operator; -analysis; sharp constant; discrete Hardy type inequality; 26D10; 26D15; 39A13;
D O I
暂无
中图分类号
学科分类号
摘要
Some q-analysis variants of Hardy type inequalities of the form \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\int_0^b {\left( {{x^{\alpha - 1}}\int_0^x {{t^{ - \alpha }}f(t){{\text{d}}_q}t} } \right)} ^p}{{\text{d}}_q}x \leqslant C\int_0^b {{f^p}(t){{\text{d}}_q}t} $$\end{document} with sharp constant C are proved and discussed. A similar result with the Riemann-Liouville operator involved is also proved. Finally, it is pointed out that by using these techniques we can also obtain some new discrete Hardy and Copson type inequalities in the classical case.
引用
收藏
页码:659 / 682
页数:23
相关论文
共 20 条
[1]  
Al-Salam W. A.(1966)Some fractional Proc. Edinb. Math. Soc., II. Ser. 15 135-140
[2]  
Bangerezako G.(2005)-integrals and J. Math. Anal. Appl. 306 161-179
[3]  
Bennett G.(1998)-derivatives Q. J. Math., Oxf. II. Ser. 49 395-432
[4]  
Bennett G.(2006)Variational calculus on Houston J. Math. 32 801-831
[5]  
Cass F. P.(1990)-nonuniform lattices Rocky Mt. J. Math. 20 59-74
[6]  
Kratz W.(2005)Inequalities complementary to Hardy Proc. Am. Math. Soc. 133 1977-1984
[7]  
Gao P.(2008)Sums of powers and the meaning of J. Math. Anal. Appl. 343 48-57
[8]  
Gao P.(2010)Nörlund and weighted mean matrices as operators on Math. Z. 264 829-848
[9]  
Gao P.(2011)A note on Hardy-type inequalities Math. Inequal. Appl. 14 373-387
[10]  
Gao P.(2004)Hardy-type inequalities via auxiliary sequences Comput. Math. Appl. 47 281-300