Schwarz’s Lemma for Slice Clifford Analysis

被引:0
作者
Guangbin Ren
Zhenghua Xu
机构
[1] University of Science and Technology of China,Department of Mathematics
来源
Advances in Applied Clifford Algebras | 2015年 / 25卷
关键词
Slice monogenic function; Maximum modulus principle; Schwarz lemma; Burns-Krantz theorem;
D O I
暂无
中图分类号
学科分类号
摘要
It is known that the Schwarz lemma in Clifford analysis does not hold at least in the original form. In this article we find that the situation in slice Clifford analysis is totally different. The sharp Schwarz lemma in slice Clifford analysis holds true in the original form, as well as the Cartan theorem, the Hopf lemma, and the Burns-Krantz theorem. The point of these theorems in slice Clifford analysis is that the results hold for such a map f:Rm+1→R0,m\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${f :\mathbb{R}^{m+1} \rightarrow \mathbb{R}_0,m}$$\end{document} that is not a self map for any m ≥ 2.
引用
收藏
页码:965 / 976
页数:11
相关论文
共 10 条
[1]  
Colombo F.(2009)Slice monogenic functions Israel J. Math. 71 385-403
[2]  
Sabadini I.(2010)An extension theorem for slice monogenic functions and some of its consequences Israel J. Math. 177 369-389
[3]  
Struppa D.C.(2010)Duality theorems for slice hyperholomorphic functions J. Reine Angew. Math. 645 85-105
[4]  
Colombo F.(1940)Die Winkelderivierte und das Poisson-Stieltjes Integral Math. Z. 46 129-156
[5]  
Sabadini I.(undefined)undefined undefined undefined undefined-undefined
[6]  
Struppa D.C.(undefined)undefined undefined undefined undefined-undefined
[7]  
Colombo F.(undefined)undefined undefined undefined undefined-undefined
[8]  
Sabadini I.(undefined)undefined undefined undefined undefined-undefined
[9]  
Struppa D.C.(undefined)undefined undefined undefined undefined-undefined
[10]  
Herzig A.(undefined)undefined undefined undefined undefined-undefined