A Result on Ext over Kac-Moody Algebras

被引:0
作者
Neidhardt W. [1 ]
机构
[1] Department of Mathematics, Edmonds Community College, 20000 68th Avenue West, Lynnwood
关键词
Kac-Moody; Lie algebras; Verma modules;
D O I
10.1023/A:1009933409824
中图分类号
学科分类号
摘要
We prove the following result for a not necessarily symmetrizable Kac-Moody algebra: Let x, y ∈ W with x ≥ y, and let λ ∈ P+. If n = l(x)-l(y), then dim ExtnC(λ)(M(x·λ), L(y·λ)) = 1.
引用
收藏
页码:161 / 168
页数:7
相关论文
共 9 条
  • [1] Deodhar, V.V., Gabber, O., Kac, V.G., Structure of some categories of representations of infinite-dimensional Lie algebras (1982) Adv. in Math., 45, pp. 92-116
  • [2] Kac, V.G., (1983) Infinite-Dimensional Lie Algebras, , Progr. Math. 44, Birkhäuser, Boston
  • [3] Kac, V.G., Simple irreducible graded Lie algebras of finite growth (Russian) (1968) Izv. Akad. Nauk SSSR, 32, pp. 1323-1367
  • [4] (1968) Math. USSR Izv., 2, pp. 1271-1311. , English
  • [5] Moody, R.V., A new class of Lie algebras (1968) J. Algebra, 10, pp. 211-230
  • [6] Neidhardt, W., The BGG resolution, character and denominator formulas, and related results for Kac-Moody algebras (1986) Trans. Amer. Math. Soc., 297, pp. 487-504
  • [7] Neidhardt, W., General Kac-Moody algebras and the Kazhdan-Lusztig conjecture (1993) Pacific J. Math., 159, pp. 87-126
  • [8] Neidhardt, W., Translation to and fro over Kac-Moody algebras (1989) Pacific J. Math., 139, pp. 107-153
  • [9] Neidhardt, W., Verma module imbeddings and the Bruhat order for Kac-Moody algebras (1987) J. Algebra, 109, pp. 430-438