Deformation Quantization of a Certain Type of Open Systems

被引:0
作者
Florian Becher
Nikolai Neumaier
Stefan Waldmann
机构
[1] Physikalisches Institut,Fakultät für Mathematik und Physik
[2] Albert-Ludwigs-Universität Freiburg,undefined
来源
Letters in Mathematical Physics | 2010年 / 92卷
关键词
53D55; 81S22; deformation quantization; open systems; completely positive maps;
D O I
暂无
中图分类号
学科分类号
摘要
We give an approach to open quantum systems based on formal deformation quantization. It is shown that classical open systems of a certain type can be systematically quantized into quantum open systems preserving the complete positivity of the open time evolution. The usual example of linearly coupled harmonic oscillators is discussed.
引用
收藏
页码:155 / 180
页数:25
相关论文
共 44 条
  • [1] Basart H.(1984)Deformation theory applied to quantization and statistical mechanics Lett. Math. Phys. 8 483-494
  • [2] Flato M.(1985)Conformal Symplectic geometry, deformations, rigidity and geometrical (KMS) conditions Lett. Math. Phys. 10 167-177
  • [3] Lichnerowicz A.(1978)Deformation theory and quantization Ann. Phys. 111 61-151
  • [4] Sternheimer D.(1998)A remark on formal KMS states in deformation quantization Lett. Math. Phys. 45 49-61
  • [5] Basart H.(1950)A note on the quantization of dissipative systems Phys. Rev. 77 396-397
  • [6] Lichnerowicz A.(2001)Algebraic rieffel induction, formal morita equivalence and applications to deformation quantization J. Geom. Phys. 37 307-364
  • [7] Bayen F.(2005)Completely positive inner products and strong Morita equivalence Pac. J. Math. 222 201-236
  • [8] Flato M.(2005)Hermitian star products are completely positive deformations Lett. Math. Phys. 72 143-152
  • [9] Frønsdal C.(1975)On the quantization of dissipative systems in the Lagrange–Hamilton formalism Zeitschrift für Physik B 21 295-300
  • [10] Lichnerowicz A.(1983)Existence of star-products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds Lett. Math. Phys. 7 487-496