Density zero results for elliptic curves without complex multiplication
被引:0
作者:
Paulo Ribenboim
论文数: 0引用数: 0
h-index: 0
机构:Department of Mathematics and Statistics,
Paulo Ribenboim
机构:
[1] Department of Mathematics and Statistics,
[2] Queen's University,undefined
[3] Kingston K7L 3N6,undefined
[4] Canada,undefined
来源:
Archiv der Mathematik
|
1998年
/
70卷
关键词:
Positive Integer;
Elliptic Curve;
Complex Multiplication;
Elliptic Curf;
Number Field;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
It is conjectured that if K is any number field, there exists a positive integer \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ n_0(K) $\end{document} such that if \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ n>n_0(K) $\end{document} the following set is empty: \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ {\cal E}_{n}^{noCM}(K)=\{(E,C)| E $\end{document} is an elliptic curve defined over K, without complex multiplication, C is a cyclic subgroup of order q, invariant by K-automorphisms of \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ \overline {\Bbb Q} $\end{document}. Let \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ {\cal N}(K)=\{n>2|{\cal E}_{n}^{noCM}(K)\ne \emptyset \} $\end{document}. We prove that for every K the set \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}
$ {\cal N} (K)$\end{document} has uniform density 0.