An intersection theorem for set-valued mappings

被引:0
作者
Ravi P. Agarwal
Mircea Balaj
Donal O’Regan
机构
[1] Texas A&M University,Department of Mathematics
[2] University of Oradea,Department of Mathematics
[3] National University of Ireland,Department of Mathematics
来源
Applications of Mathematics | 2013年 / 58卷
关键词
intersection theorem; fixed point; saddle point; equilibrium problem; complementarity problem; 47H10; 49J53;
D O I
暂无
中图分类号
学科分类号
摘要
Given a nonempty convex set X in a locally convex Hausdorff topological vector space, a nonempty set Y and two set-valued mappings T: X ⇉ X, S: Y ⇉ X we prove that under suitable conditions one can find an x ∈ X which is simultaneously a fixed point for T and a common point for the family of values of S. Applying our intersection theorem, we establish a common fixed point theorem, a saddle point theorem, as well as existence results for the solutions of some equilibrium and complementarity problems.
引用
收藏
页码:269 / 278
页数:9
相关论文
共 28 条
[1]  
Agarwal R.P.(2009)Common fixed point theorems and minimax inequalities in locally convex Hausdorff topological vector spaces Appl. Anal. 88 1691-1699
[2]  
Balaj M.(2009)Existence of solutions of vector variational inequalities and vector complementarity problems J. Glob. Optim. 45 297-307
[3]  
O’Regan D.(1999)An existence result for the generalized vector equilibrium problem Appl. Math. Lett. 12 53-56
[4]  
Ansari Q.H.(2007)An intersection theorem with applications in minimax theory and equilibrium problem J. Math. Anal. Appl. 336 363-371
[5]  
Farajzadeh A.P.(2010)A fixed point-equilibrium theorem with applications Bull. Belg. Math. Soc. —Simon Stevin 17 919-928
[6]  
Schaible S.(2010)Inclusion and intersection theorems with applications in equilibrium theory in J. Korean Math. Soc. 47 1017-1029
[7]  
Ansari Q.H.(1961)-convex spaces Math. Ann. 142 305-310
[8]  
Yao J.C.(2009)A generalization of Tychonoff’s fixed point theorem J. Glob. Optim. 45 229-235
[9]  
Balaj M.(1972)Mixed quasi complementarity problems in topological vector spaces J. Math. Anal. Appl. 38 205-207
[10]  
Balaj M.(1993)Fixed points of compact multifunctions J. Math. Anal. Appl. 179 537-546