The finite volume method for Richards equation

被引:0
作者
Robert Eymard
Michaël Gutnic
Danielle Hilhorst
机构
[1] Ecole Nationale des Ponts et Chaussées,Institut de Recherche Mathématique Avancée
[2] Université Louis Pasteur,Laboratoire de Mathématiques, Analyse Numérique et EDP
[3] CNRS et Université de Paris-Sud (bât. 425),undefined
来源
Computational Geosciences | 1999年 / 3卷
关键词
flow in porous media; Richards equation; finite volume methods; convergence of approximate solutions; discrete a priori estimates; Kolmogorov's theorem; 35k55; 65M12; 65N12; 65N22; 76M25; 76S05;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we prove the convergence of a finite volume scheme for the discretization of an elliptic–parabolic problem, namely Richards equation β(P)t−div(K(β(P))× ∇(P+z))=0, together with Dirichlet boundary conditions and an initial condition. This is done by means of a priori estimates in L2 and the use of Kolmogorov's theorem on relative compactness of subsets of L2.
引用
收藏
页码:259 / 294
页数:35
相关论文
共 33 条
[1]  
Alt H.W.(1983)Quasilinear elliptic-parabolic differential equations Math. Z. 183 311-341
[2]  
Luckhaus S.(1993)Co-volume methods for degenerate parabolic problems Numer. Math. 64 45-67
[3]  
Baughman L.A.(1990)A general mass-conservative numerical solution for the unsaturated flow in porous media Water Resour. Res. 26 1483-1496
[4]  
Walkington N.J.(1999)Saturated-unsaturated simulation for coupled heat and mass transfer in the ground by means of a mixed finite element method Adv. Water Resources 22 445-460
[5]  
Celia M.A.(1982)Nonstationary filtration in partially saturated porous media Arch. Rat. Mech. Anal. 78 173-198
[6]  
Bouloutas E.T.(1998)Finite volumes and nonlinear diffusion equations M2AN 32 747-761
[7]  
Zarba R.L.(1998)The finite volume method for an elliptic-parabolic equation Acta Math. Univ. Comenian. 67 181-195
[8]  
Chounet L. M.(1997)Monotonicity considerations for saturated-unsaturated subsurface flow SIAM J. Sci. Comput. 18 1328-1354
[9]  
Hilhorst D.(1977)A comparison of numerical simulation models for one-dimensional infiltration Soil Sci. Soc. Am. J. 41 285-294
[10]  
Jouron C.(1988)Monotone flows in Arch. Rat. Mech. Anal. 102 287-305