One weight Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} additive codes

被引:0
作者
Steven T. Dougherty
Hongwei Liu
Long Yu
机构
[1] University of Scranton,Department of Mathematics
[2] Central China Normal University,School of Mathematics and Statistics
关键词
One weight additive codes; Dual codes; Gray map; 94B60; 94B05;
D O I
10.1007/s00200-015-0273-4
中图分类号
学科分类号
摘要
We study one weight Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} additive codes. It is shown that the image of an equidistant Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} code is a binary equidistant code and that the image of a one weight Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} additive code, with nontrivial binary part, is a linear binary one weight code. The structure and possible weights for all one weight Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {Z}_2\mathbb {Z}_4$$\end{document} additive codes are described. Additionally, a lower bound for the minimum distance of dual codes of one weight additive codes is obtained.
引用
收藏
页码:123 / 138
页数:15
相关论文
共 50 条
[23]   DNA multi-secret sharing schemes based on linear codes over Z4×R\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4} \times R$$\end{document} [J].
Ahlem Melakhessou ;
Karima Chatouh ;
Kenza Guenda .
Journal of Applied Mathematics and Computing, 2023, 69 (6) :4833-4853
[24]   FqR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_qR$$\end{document}-Linear skew cyclic codes [J].
Juan Li ;
Jian Gao ;
Fang-Wei Fu .
Journal of Applied Mathematics and Computing, 2022, 68 (3) :1719-1741
[25]   Some results on F4[v]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_4[v]$$\end{document}-double cyclic codes [J].
Srinivasulu Bathala ;
Padmapani Seneviratne .
Computational and Applied Mathematics, 2021, 40 (2)
[28]   FqR\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}_qR$$\end{document}-linear skew constacyclic codes and their application of constructing quantum codes [J].
Juan Li ;
Jian Gao ;
Fang-Wei Fu ;
Fanghui Ma .
Quantum Information Processing, 2020, 19 (7)
[30]   Simplex and MacDonald codes over Rq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R_{q}$$\end{document} [J].
K. Chatouh ;
K. Guenda ;
T. A. Gulliver ;
L. Noui .
Journal of Applied Mathematics and Computing, 2017, 55 :455-478