On the rigidity of hypersurfaces into space forms

被引:0
作者
Abdênago Barros
Cícero Aquino
Henrique de Lima
机构
[1] Universidade Federal do Ceará,Departamento de Matemática
[2] Universidade Federal do Piauí,Departamento de Matemática
[3] Universidade Federal de Campina Grande,Departamento de Matemática e Estatística
来源
Annali di Matematica Pura ed Applicata | 2014年 / 193卷
关键词
Space forms; Complete hypersurfaces; Totally geodesic hypersurfaces; Gauss mapping; Higher order mean curvatures; Index of minimum relative nullity; 53C42;
D O I
暂无
中图分类号
学科分类号
摘要
Our purpose is to study the rigidity of complete hypersurfaces immersed into a Riemannian space form. In this setting, first we use a classical characterization of the Euclidean sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} due to Obata (J Math Soc Jpn 14:333–340, 1962) in order to prove that a closed orientable hypersurface \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Sigma ^n$$\end{document} immersed with null second-order mean curvature in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n+1}$$\end{document} must be isometric to a totally geodesic sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb S ^{n}$$\end{document}, provided that its Gauss mapping is contained in a closed hemisphere. Furthermore, as suitable applications of a maximum principle at the infinity for complete noncompact Riemannian manifolds due to Yau (Indiana Univ Math J 25:659–670, 1976), we establish new characterizations of totally geodesic hypersurfaces in the Euclidean and hyperbolic spaces. We also obtain a lower estimate of the index of minimum relative nullity concerning complete noncompact hypersurfaces immersed in such ambient spaces.
引用
收藏
页码:689 / 698
页数:9
相关论文
共 31 条
  • [1] Aledo JA(1999)Integral formulas for compact space-like hypersurfaces in de Sitter space: applications to the case of constant higher order mean curvature J. Geom. Phys. 31 195-208
  • [2] Alías LJ(1993)Stable hypersurfaces with constant scalar curvature Math. Z. 213 117-131
  • [3] Romero A(2004)On the Gauß map of hypersurfaces with constant scalar curvature in spheres Proc. Am. Math. Soc. 132 3731-3739
  • [4] Alencar H(2006)On the stability index of minimal and constant mean curvature hypersurfaces in spheres Revista Uni{\’o}n Math. Argent. 47 39-61
  • [5] do Carmo M(2012)On the Gauss map of complete CMC hypersurfaces in the hyperbolic space J. Math. Anal. Appl. 386 862-869
  • [6] Colares G(1910)Sur les surfaces d’efinies au moyen de leur courboure moyenne ou totale Ann. Ec. Norm. Sup. 27 233-256
  • [7] Alencar H(2006)On hypersurfaces into Riemannnian spaces of constant sectional curvature Kodai Math. J. 29 185-210
  • [8] Rosenberg H(2006)A rigidity theorem for complete CMC hypersurfaces in Lorentz manifolds Diff. Geom. Appl. 24 652-659
  • [9] Santos W(2010)Complete foliations of space forms by hypersurfaces Bull. Braz. Math. Soc. 41 339-353
  • [10] Alías LJ(1981)A negative answer to a conjecture of conformal transformations of Riemannian manifolds J. Math. Soc. Jpn. 33 261-266