A Koebe distortion theorem for quasiconformal mappings in the Heisenberg group

被引:0
作者
Tomasz Adamowicz
Katrin Fässler
Ben Warhurst
机构
[1] Polish Academy of Sciences,The Institute of Mathematics
[2] University of Fribourg,Department of Mathematics
[3] University of Warsaw,Institute of Mathematics
[4] University of Jyväskylä,Department of Mathematics and Statistics
来源
Annali di Matematica Pura ed Applicata (1923 -) | 2020年 / 199卷
关键词
Quasiconformal mappings; Heisenberg group; Modulus of curves; Koebe theorem; BMO; Primary 30L10; Secondary 30C65; 30F45;
D O I
暂无
中图分类号
学科分类号
摘要
We prove a Koebe distortion theorem for the average derivative of a quasiconformal mapping between domains in the sub-Riemannian Heisenberg group H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{1}$$\end{document}. Several auxiliary properties of quasiconformal mappings between subdomains of H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{1}$$\end{document} are proven, including BMO estimates for the logarithm of the Jacobian. Applications of the Koebe theorem include diameter bounds for images of curves, comparison of integrals of the average derivative and the operator norm of the horizontal differential, as well as the study of quasiconformal densities and metrics in domains in H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {H}}^{1}$$\end{document}. The theorems are discussed for the sub-Riemannian and the Korányi distances. This extends results due to Astala–Gehring, Astala–Koskela, Koskela and Bonk–Koskela–Rohde.
引用
收藏
页码:147 / 186
页数:39
相关论文
共 48 条
  • [11] Fässler K(1973)The Acta Math. 130 265-277
  • [12] Platis ID(1994)-integrability of the partial derivatives of a quasiconformal mapping Proc. Am. Math. Soc. 120 535-543
  • [13] Bonk M(1995)-condition for the Jacobian of a quasiconformal mapping Invent. Math. 120 61-79
  • [14] Koskela P(1998)Definitions of quasiconformality Acta Math. 181 1-61
  • [15] Rohde S(2001)Quasiconformal maps in metric spaces with controlled geometry J. Anal. Math. 85 87-139
  • [16] Buckley SM(2004)Sobolev classes of Banach space-valued functions and quasiconformal mappings Math. Proc. Camb. Philos. Soc. 136 325-360
  • [17] Capogna L(2018)Conformal deformations of uniform Loewner spaces Geom. Dedicata 192 157-170
  • [18] Tang P(2014)Quasiconvexity in the Heisenberg group Comput. Methods Funct. Theory 14 295-314
  • [19] Dairbekov NS(1995)Gehring’s lemma and reverse Hölder classes on metric measure spaces Adv. Math. 111 1-87
  • [20] Gehring FW(1994)Foundations for the theory of quasiconformal mappings on the Heisenberg group Rev. Mat. Iberoam. 10 123-141