Quasi-Periodic Solutions to the Nonlocal Nonlinear Schrödinger Equations

被引:2
作者
Guan, Liang [1 ]
Geng, Xianguo [2 ]
Geng, Xue [1 ]
机构
[1] Anyang Normal Univ, Sch Math & Stat, 436 Xiange Rd, Anyang 455000, Henan, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal nonlinear Schrodinger equations; Algebraic curve; Baker-Akhiezer function; Quasi-periodic solutions; INVERSE SCATTERING TRANSFORM; ALGEBRO-GEOMETRIC SOLUTIONS; N-SOLITON SOLUTION; DECOMPOSITION; HIERARCHY;
D O I
10.1007/s12346-024-01028-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A hierarchy of nonlocal nonlinear Schrodinger equations is derived by using the Lenard gradients and the zero-curvature equation. According to the Lax matrix of the nonlocal nonlinear Schrodinger equations, we introduce a hyperelliptic Riemann surface Kn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {K}}_{n}$$\end{document} of genus n, from which Dubrovin-type equations, meromorphic function, and Baker-Akhiezer function are established. By the theory of algebraic curves, the corresponding flows are straightened by resorting to the Abel-Jacobi coordinates. Finally, we obtain the explicit Riemann theta function representations of the Baker-Akhiezer function, specifically, that of solutions for the hierarchy of nonlocal nonlinear Schrodinger equations in regard to the asymptotic properties of the Baker-Akhiezer function.
引用
收藏
页数:23
相关论文
共 46 条
[1]   Integrable Nonlocal Nonlinear Equations [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
STUDIES IN APPLIED MATHEMATICS, 2017, 139 (01) :7-59
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]   Integrable discrete PT symmetric model [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW E, 2014, 90 (03)
[4]   Integrable Nonlocal Nonlinear Schrodinger Equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
PHYSICAL REVIEW LETTERS, 2013, 110 (06)
[5]  
ABLOWITZ MJ, 1974, STUD APPL MATH, V53, P249
[6]   ON FINITE-ZONE SOLUTIONS OF RELATIVISTIC TODA-LATTICES [J].
ALBER, SJ .
LETTERS IN MATHEMATICAL PHYSICS, 1989, 17 (02) :149-155
[7]  
Belokolos E.D., 1994, Algebro-geometric approach to nonlinear integrable equations
[8]  
CAO CW, 1990, SCI CHINA SER A, V33, P528
[9]   Relation between the Kadometsev-Petviashvili equation and the confocal involutive system [J].
Cao, CW ;
Wu, YT ;
Geng, XG .
JOURNAL OF MATHEMATICAL PHYSICS, 1999, 40 (08) :3948-3970
[10]  
CAO CW, 1990, J PHYS A-MATH GEN, V23, P4117, DOI 10.1088/0305-4470/23/18/017