In this article, we discuss a type of second-order neutral differential equations with variable coefficient and delay: (x(t)-c(t)x(t-τ(t)))′′+a(t)x(t)=f(t,x(t-δ(t))),\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\begin{aligned} (x(t)-c(t)x(t-\tau (t)))''+a(t)x(t)=f(t,x(t-\delta (t))), \end{aligned}$$\end{document}where c(t)∈C(R,R)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$c(t)\in C({\mathbb {R}},{\mathbb {R}})$$\end{document} and |c(t)|≠1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$|c(t)|\ne 1$$\end{document}. By employing Krasnoselskii’s fixed-point theorem and properties of the neutral operator (Ax)(t):=x(t)-c(t)x(t-τ(t))\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$(Ax)(t):=x(t)-c(t)x(t-\tau (t))$$\end{document}, some sufficient conditions for the existence of periodic solutions are established.