miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells

被引:0
|
作者
Y Chen
Y Xiao
W Ge
K Zhou
J Wen
W Yan
Y Wang
B Wang
C Qu
J Wu
L Xu
W Cai
机构
[1] Xin Hua Hospital,Department of Gastroenterology
[2] School of Medicine,Department of Pediatric Surgery
[3] Shanghai Jiao Tong University,undefined
[4] Shanghai Institute for Pediatric Research,undefined
[5] Shanghai Key Laboratory of Pediatric Gastroenterology and Nutrition,undefined
[6] Xin Hua Hospital,undefined
[7] School of Medicine,undefined
[8] Shanghai Jiao Tong University,undefined
来源
Cell Death & Disease | 2013年 / 4卷
关键词
inflammatory bowel disease; miR-200b; intestinal epithelial cell; transforming growth factor-beta1; epithelial-mesenchymal transition; E-cadherin;
D O I
暂无
中图分类号
学科分类号
摘要
Inflammatory bowel disease (IBD), which consists of Crohn's disease (CD) and ulcerative colitis (UC), is a chronic, inflammatory disorder of the gastro-intestinal tract with unknown etiology. Current evidence suggests that intestinal epithelial cells (IECs) is prominently linked to the pathogenesis of IBD. Therefore, maintaining the intact of epithelium has potential roles in improving pathophysiology and clinical outcomes of IBD. MicroRNAs (miRNAs) act as post-transcriptional gene regulators and regulate many biological processes, including embryonal development, cell differentiation, apoptosis and proliferation. In this study, we found that miR-200b decreased significantly in inflamed mucosa of IBD, especially for UC, when compared with their adjacent normal tissue. Simultaneously, we also found that the genes of E-cadherin and cyclin D1 were reduced significantly and correlated positively to the miR-200b. In addition, the upregulation of transforming growth factor-beta 1 (TGF-β1) was inversely correlated to the miR-200b in IBD. To investigate the possible roles of miR-200b in IECs maintaining, we used TGF-β1 to induce epithelial-mesenchymal transition (EMT) in IEC-6 initially. After sustained over-expressing miR-200b in IEC-6, the EMT was inhibited significantly that was characterized by downregulation of vimentin and upregulation of E-cadherin. Furthermore, we found that miR-200b enhanced E-cadherin expression through targeting of ZEB1, which encode transcriptional repressors of E-cadherin. SMAD2 was found to act as a target of miR-200b with direct evidence that miR-200b binding to the 3′ UTR of SAMD2 and the ability of miR-200b to repress SMAD2 protein expression. With SMAD2 depletion, the expression of vimentin decreased correspondingly, which suggested miR-200b might reduce vimentin through regulating the SMAD2. With endogenous over-expression of miR-200b, the proliferation of IEC-6 cells increased significantly by increasing S-phase entry and promoting expression of the protein cyclin D1. Summarily, our study suggested a potential role for mir-200b in maintaining intact of intestinal epithelium through inhibiting EMT and promoting proliferation of IECs.
引用
收藏
页码:e541 / e541
相关论文
共 50 条
  • [1] miR-200b inhibits TGF-β1-induced epithelial-mesenchymal transition and promotes growth of intestinal epithelial cells
    Chen, Y.
    Xiao, Y.
    Ge, W.
    Zhou, K.
    Wen, J.
    Yan, W.
    Wang, Y.
    Wang, B.
    Qu, C.
    Wu, J.
    Xu, L.
    Cai, W.
    CELL DEATH & DISEASE, 2013, 4 : e541 - e541
  • [2] IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells
    Dong, Zhaoxing
    Tai, Wenlin
    Lei, Wen
    Wang, Yin
    Li, ZhenKun
    Zhang, Tao
    BMC CELL BIOLOGY, 2016, 17
  • [3] IL-27 inhibits the TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells
    Zhaoxing Dong
    Wenlin Tai
    Wen Lei
    Yin Wang
    ZhenKun Li
    Tao Zhang
    BMC Cell Biology, 17
  • [4] MIR-200B PREVENTS TGFβ1-INDUCED EPITHELIAL MESENCHYMAL TRANSITION AND FIBROSIS IN KIDNEY PROXIMAL TUBULAR CELLS
    Tang, O.
    Chen, X.
    Pollock, C.
    NEPHROLOGY, 2010, 15 : 67 - 67
  • [5] MiRNA-200b inhibits epithelial-mesenchymal transition in TGF-β1 induced human bronchial epithelial cells
    Ladak, Shameem Sultanali
    Ward, Chris
    Ali, Simi
    EUROPEAN RESPIRATORY JOURNAL, 2016, 48
  • [6] Bortezomib inhibits proliferation, migration, and TGF-β1-induced epithelial-mesenchymal transition of RPE cells
    Moon, Kun
    Lee, Hyun-Gyo
    Baek, Won-Ki
    Lee, Youngkyun
    Kim, Kwang Soo
    Jun, Jong Hwa
    Kim, Jae-Young
    Joo, Choun-Ki
    MOLECULAR VISION, 2017, 23 : 1029 - 1038
  • [7] Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells
    Xiahui Tan
    Hayat Dagher
    Craig A Hutton
    Jane E Bourke
    Respiratory Research, 11
  • [8] Simvastatin Attenuates TGF-β1-Induced Epithelial-Mesenchymal Transition in Human Alveolar Epithelial Cells
    Yang, Tuo
    Chen, Miaomiao
    Sun, Tieying
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2013, 31 (06) : 863 - 874
  • [9] Effects of PPARγ ligands on TGF-β1-induced epithelial-mesenchymal transition in alveolar epithelial cells
    Tan, Xiahui
    Dagher, Hayat
    Hutton, Craig A.
    Bourke, Jane E.
    RESPIRATORY RESEARCH, 2010, 11
  • [10] miR-152 regulates TGF-β1-induced epithelial-mesenchymal transition by targeting HPIP in tubular epithelial cells
    Ning, Ya-Xian
    Wang, Xiao-Yuan
    Wang, Jian-Qin
    Zeng, Rong
    Wang, Gou-Qin
    MOLECULAR MEDICINE REPORTS, 2018, 17 (06) : 7973 - 7979