共 6 条
Fluid Inclusion, REE and Trace Element Characteristics of the Relin Ore District in the Zhongdian Region, Yunnan Province, SW China: A Granite-Related Hydrothermal Cu–Mo Mineral Deposit
被引:0
|作者:
Jian Liu
Rui An
Rongge Xiao
Gaoshang Wang
机构:
[1] School of Earth Sciences and Resources of China University of Geosciences,Institute of Mineral Resources
[2] Chinese Academy of Geological Sciences,undefined
[3] College of Earth Sciences of Jilin University,undefined
来源:
Arabian Journal for Science and Engineering
|
2017年
/
42卷
关键词:
Fluid inclusions;
REE;
S, Re isotopes;
Relin Cu–Mo deposit;
Granite-related hydrothermal deposit;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
The Relin Cu–Mo deposit in the Zhongdian region, located in the south portion of the Yidun Arc, is hosted by Late Cretaceous post-magmatic granitoids. The types of mineralization are associated with hornfels, quartz vein and altered granite. The mineral paragenesis can be divided into four stages: (1) pyrite ± chalcopyrite–quartz (I); (2) pyrite–chalcopyrite ± molybdenite–quartz (II); (3) molybdenite ± chalcopyrite–quartz (III); and (4) chalcopyrite–quartz–calcite (IV), with copper–molybdenum minerals being introduced mainly in stages II and III. Four types of fluid inclusions were identified in the vein mineral assemblages: H2O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}_{2}\hbox {O}$$\end{document}–NaCl (VL- and LV-type), NaCl–H2O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}_{2}\hbox {O}$$\end{document} (SL-type), and H2O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}_{2}\hbox {O}$$\end{document}–CO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_{2}$$\end{document}–NaCl (LC-type). The ore-forming fluids experienced a transition from H2O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}_{2}\hbox {O}$$\end{document}–CO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_{2}$$\end{document}–NaCl systems to H2O\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}_{2}\hbox {O}$$\end{document}–NaCl systems. The main ore-forming fluids are magmatogenic fluids and metal-bearing hot brines. Unmixing of fluids may be the main mechanism for sulfide precipitation, and fluid boiling and degassing of CO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_{2}$$\end{document} are the key processes of ore deposition. Fluid inclusions, REE and trace element data, and S, Re, C, H, O isotopes indicate that the ore-forming fluid is of magmatic origin and contains H2S\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {H}_{2}\hbox {S}$$\end{document} and CO2\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\hbox {CO}_{2}$$\end{document}, originating from Late Cretaceous Relin intrusions emplaced in shallow crustal levels. The geochronological data indicate that Cu–Mo mineralization in the Relin district formed at ∼\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\sim $$\end{document}82–80 Ma. The results show that the Relin Cu–Mo deposit is a granite-related hypothermal deposit formed in a post-orogenic extensional environment due to significantly lower crustal partial melting and thickening the Yangtze Terrane during the Late Cretaceous (85–75 Ma).
引用
收藏
页码:2449 / 2469
页数:20
相关论文