On the Hilbert 2-Class Field Tower of Some Imaginary Biquadratic Number Fields

被引:0
作者
Mohamed Mahmoud Chems-Eddin
Abdelmalek Azizi
Abdelkader Zekhnini
Idriss Jerrari
机构
[1] Mohammed First University,Mathematics Department, Sciences Faculty
[2] Mohammed First University,Mathematics Department, Pluridisciplinary Faculty
[3] Mohammed First University,Mathematics Department, Sciences Faculty
来源
Czechoslovak Mathematical Journal | 2021年 / 71卷
关键词
2-class group; imaginary biquadratic number field; capitulation; Hilbert 2-class field; 11R11; 11R27; 11R29; 11R37;
D O I
暂无
中图分类号
学科分类号
摘要
Let \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k} = \mathbb{Q} \left( {\sqrt 2 ,\; \sqrt d } \right)$$\end{document} be an imaginary bicyclic biquadratic number field, where d is an odd negative square-free integer and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k}_2^{\left( 2 \right)}$$\end{document} its second Hilbert 2-class field. Denote by \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G = {\rm{Gal}}\left( {\mathbb{k}_2^{\left( 2 \right)}/ \mathbb{k}} \right)$$\end{document} the Galois group of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb{k}_2^{\left( 2 \right)}/ \mathbb{k}}$$\end{document}. The purpose of this note is to investigate the Hilbert 2-class field tower of \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{k}$$\end{document} and then deduce the structure of G.
引用
收藏
页码:269 / 281
页数:12
相关论文
共 23 条
  • [1] Azizi A(1999)Unités de certains corps de nombres imaginaires et abéliens sur Ann. Sci. Math. Qué. 23 15-21
  • [2] Azizi A(2005)Sur les unités de certains corps de nombres de degré 8 sur Ann. Sci. Math. Qué. 29 111-129
  • [3] Azizi A(2005)Sur la capitulation des 2-classes d’idéaux de Ann. Sci. Math. Qué. 29 1-20
  • [4] Benhamza I(2003)Capitulation des 2-classes d’idéaux de Acta Arith. 109 27-63
  • [5] Azizi A(2007) où Acta Arith. 127 231-248
  • [6] Mouhib A(2008) est un entier naturel sans facteurs carrés Acta Arith. 131 103-123
  • [7] Azizi A(1973)Capitulation des 2-classes d’idéaux de certains corps biquadratiques cycliques I. Ann. Inst. Fourier 23 1-48
  • [8] Talbi M(1982)Capitulation des 2-classes d’idéaux de J. Reine Angew. Math. 336 1-25
  • [9] Azizi A(1973)Sur les J. Math. Soc. Japan 25 596-608
  • [10] Taous M(1976)-classes d’idéaux dans les extensions cycliques rélatives de degré premier J. Reine. Angew. Math. 283–284 313-363