Hecke algebras with independent parameters

被引:0
作者
Jia Huang
机构
[1] University of Nebraska at Kearney,Department of Mathematics and Statistics
来源
Journal of Algebraic Combinatorics | 2016年 / 43卷
关键词
Hecke algebra; Independent parameters; Fibonacci number; Independent set; Grothendieck group;
D O I
暂无
中图分类号
学科分类号
摘要
We study the Hecke algebra H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}({\mathbf {q}})$$\end{document} over an arbitrary field F\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {F}}$$\end{document} of a Coxeter system (W, S) with independent parameters q=(qs∈F:s∈S)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbf {q}}=(q_s\in {\mathbb {F}}:s\in S)$$\end{document} for all generators. This algebra always has a spanning set indexed by the Coxeter group W, which is indeed a basis if and only if every pair of generators joined by an odd edge in the Coxeter diagram receives the same parameter. In general, the dimension of H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}({\mathbf {q}})$$\end{document} could be as small as 1. We construct a basis for H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}({\mathbf {q}})$$\end{document} when (W, S) is simply laced. We also characterize when H(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathcal {H}}({\mathbf {q}})$$\end{document} is commutative, which happens only if the Coxeter diagram of (W, S) is simply laced and bipartite. In particular, for type A, we obtain a tower of semisimple commutative algebras whose dimensions are the Fibonacci numbers. We show that the representation theory of these algebras has some features in analogy/connection with the representation theory of the symmetric groups and the 0-Hecke algebras.
引用
收藏
页码:521 / 551
页数:30
相关论文
共 10 条
[1]  
Aguiar M(2000)Infinitesimal Hopf algebras Contemp. Math. 267 1-30
[2]  
Böhm G(1999)Weak Hopf algebras: I. Integral theory and c-structure J. Algebra 221 385-438
[3]  
Nill F(2012)Cohen–Macaulay graphs and face vectors of flag complexes SIAM J. Discret. Math. 26 89-101
[4]  
Szlachányi K(1997)Noncommutative symmetric functions IV: quantum linear groups and Hecke algebras at J. Algebr. Comb. 6 339-376
[5]  
Cook D(1979)0-Hecke algebras J. Aust. Math. Soc. A 27 337-357
[6]  
Nagel U(1994)Algebras associated to the Young–Fibonacci lattice Trans. Am. Math. Soc. 346 549-568
[7]  
Krob D(undefined)undefined undefined undefined undefined-undefined
[8]  
Thibon J-Y(undefined)undefined undefined undefined undefined-undefined
[9]  
Norton PN(undefined)undefined undefined undefined undefined-undefined
[10]  
Okada S(undefined)undefined undefined undefined undefined-undefined