Optimal growth rates for a viscous Hamilton-Jacobi equation

被引:0
作者
Philippe Laurençot
Philippe Souplet
机构
[1] Université Paul Sabatier – Toulouse 3,Mathématiques pour l’Industrie et la Physique, CNRS UMR 5640
[2] INSSET,Département de Mathématiques
[3] Université de Picardie,Laboratoire de Mathématiques Appliquées, CNRS UMR 7641
[4] Université de Versailles,undefined
来源
Journal of Evolution Equations | 2005年 / 5卷
关键词
35B05; 35B40; 35K55; Temporal growth rates; viscous Hamilton-Jacobi equation; unilateral Laplacian estimate;
D O I
暂无
中图分类号
学科分类号
摘要
The growth of the Lm-norm, m ∈ [1,∞], of non-negative solutions to the Cauchy problem ∂tu  −  Δu  =  |Δu| is studied for non-negative initial data decaying at infinity. More precisely, the function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\,\mapsto\,t^{-N/m}||u(t)||m$\end{document} is shown to be bounded from above and from below by positive real numbers. This result indicates an asymptotic behaviour dominated by the hyperbolic Hamilton-Jacobi term of the equation. A one-sided estimate for Δ ln u is also established.
引用
收藏
页码:123 / 135
页数:12
相关论文
empty
未找到相关数据