On the global structure of deformed Yang-Mills theory and QCD(adj) on ℝ3×S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{R}}}^3\times {\mathbb{S}}^1 $$\end{document}

被引:0
作者
Mohamed M. Anber
Erich Poppitz
机构
[1] Institute de Théorie des Phénomenès Physiques,Department of Physics
[2] École Polytechnique Fédérale de Lausanne,undefined
[3] University of Toronto,undefined
关键词
Confinement; Solitons Monopoles and Instantons; Nonperturbative Effects; Discrete and Finite Symmetries;
D O I
10.1007/JHEP10(2015)051
中图分类号
学科分类号
摘要
Spatial compactification on ℝ3×SL1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{R}}}^3\times {\mathbb{S}}_L^1 $$\end{document} at small S1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathbb{S}}^1 $$\end{document}-size L often leads to a calculable vacuum structure, where various “topological molecules” are responsible for confinement and the realization of the center and discrete chiral symmetries. Within this semiclassically calculable framework, we study how distinct theories with the same SUNc/ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{S}\mathrm{U}\left({N}_c\right)/{\mathrm{\mathbb{Z}}}_k $$\end{document} gauge group (labeled by “discrete θ-angles”) arise upon gauging of appropriate ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_k $$\end{document} subgroups of the one-form global center symmetry of an SU(Nc) gauge theory. We determine the possible ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{Z}}}_k $$\end{document} actions on the local electric and magnetic effective degrees of freedom, find the ground states, and use domain walls and confining strings to give a physical picture of the vacuum structure of the different SUNc/ℤk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathrm{S}\mathrm{U}\left({N}_c\right)/{\mathrm{\mathbb{Z}}}_k $$\end{document} theories. Some of our results reproduce ones from earlier supersymmetric studies, but most are new and do not invoke supersymmetry. We also study a further finite-temperature compactification to ℝ2×Sβ1×SL1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {\mathrm{\mathbb{R}}}^2\times {\mathbb{S}}_{\beta}^1\times {\mathbb{S}}_L^1 $$\end{document}. We argue that, in deformed Yang-Mills theory, the effective theory near the deconfinement temperature βc ≫ L exhibits an emergent Kramers-Wannier duality and that it exchanges high- and low-temperature theories with different global structure, sharing features with both the Ising model and S-duality in N=4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N}=4 $$\end{document} supersymmetric Yang-Mills theory.
引用
收藏
相关论文
共 116 条
  • [1] Goddard P(1977)Gauge theories and magnetic charge Nucl. Phys. B 125 1-undefined
  • [2] Nuyts J(2007)Electric-magnetic duality and the geometric Langlands program Commun. Num. Theor. Phys. 1 1-undefined
  • [3] Olive DI(2003)Comparison of SO(3) and SU(2) lattice gauge theory Nucl. Phys. B 651 125-undefined
  • [4] Kapustin A(2013)Reading between the lines of four-dimensional gauge theories JHEP 08 115-undefined
  • [5] Witten E(2015)Generalized global symmetries JHEP 02 172-undefined
  • [6] de Forcrand P(2002)Supersymmetric index in four-dimensional gauge theories Adv. Theor. Math. Phys. 5 841-undefined
  • [7] Jahn O(2014)Coupling a QFT to a TQFT and duality JHEP 04 001-undefined
  • [8] Aharony O(2015)Magnetic discrete gauge field in the confining vacua and the supersymmetric index JHEP 03 035-undefined
  • [9] Seiberg N(2008)QCD-like Theories on R Phys. Rev. D 78 065004-undefined
  • [10] Tachikawa Y(2008) × S Phys. Rev. D 78 065035-undefined