Limit Set Intersection Theorems for Kleinian Groups and a Conjecture of Susskind

被引:0
作者
James W. Anderson
机构
[1] University of Southampton,Mathematical Sciences
来源
Computational Methods and Function Theory | 2014年 / 14卷
关键词
Kleinian group; Limit set intersection theorem; Susskind’s conjecture; 30F40; 57M50; 20H10;
D O I
暂无
中图分类号
学科分类号
摘要
Susskind’s conjecture states that for subgroups Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} and Θ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Theta $$\end{document} of a Kleinian group Γ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Gamma $$\end{document} acting on Hn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb H}^n$$\end{document}, we have that Λc(Φ)∩Λc(Θ)⊂Λ(Φ∩Θ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _c(\Phi )\cap \Lambda _c (\Theta )\subset \Lambda (\Phi \cap \Theta )$$\end{document}, where Λc(Φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _c(\Phi )$$\end{document} is the set of conical limit points of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document} and Λ(Φ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda (\Phi )$$\end{document} is the limit set of Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Phi $$\end{document}. We show that Susskind’s conjecture largely holds for purely loxodromic Kleinian groups and we present two examples to illustrate that Susskind’s conjecture is nearly optimal.
引用
收藏
页码:453 / 464
页数:11
相关论文
共 13 条
  • [1] Anderson JW(1994)Intersections of analytically and geometrically finite subgroups of Kleinian groups Trans. Am. Math. Soc. 343 87-98
  • [2] Anderson JW(1995)Intersections of topologically tame subgroups of Kleinian groups J. d’Anal. Math. 65 77-94
  • [3] Anderson JW(1996)The limit set intersection theorem for finitely generated Kleinian groups Math. Res. Lett. 3 675-692
  • [4] Bishop CJ(1996)On a theorem of Beardon and Maskit Ann. Acad. Sci. Fenn. 21 383-388
  • [5] Bishop CJ(1997)Hausdorff dimension and Kleinian groups Acta Math. 179 1-39
  • [6] Jones PW(2006)Shrinkwrapping and the taming of hyperbolic 3-manifolds J. Am. Math. Soc. 19 385-446
  • [7] Calegari D(1992)Function groups in Kleinian groups Math. Ann. 292 181-190
  • [8] Gabai D(1989)Kleinian groups with intersecting limit sets J. d’Anal. Math. 52 26-38
  • [9] Soma T(1992)Limits set of geometrically finite Kleinian groups Am. J. Math. 114 233-250
  • [10] Susskind P(2012)Limit sets of relatively hyperbolic groups Geom. Dedicat. 156 1-12