Semi-empirical model for retrieval of soil moisture using RISAT-1 C-Band SAR data over a sub-tropical semi-arid area of Rewari district, Haryana (India)

被引:0
作者
Kishan Singh Rawat
Vinay Kumar Sehgal
Sanatan Pradhan
Shibendu S Ray
机构
[1] Indian Agricultural Research Institute,Division of Agricultural Physics
[2] Satyabama University,Center for Remote Sensing and Geo
[3] Mahalanobis National Crop Forecast Centre (MNCFC),Informatics
来源
Journal of Earth System Science | 2018年 / 127卷
关键词
Soil moisture; SAR; RISAT-1; TDR; semi-empirical model;
D O I
暂无
中图分类号
学科分类号
摘要
We have estimated soil moisture (SM) by using circular horizontal polarization backscattering coefficient (σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document}), differences of circular vertical and horizontal σo(σRVo-σRHo)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}} \, (\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}})$$\end{document} from FRS-1 data of Radar Imaging Satellite (RISAT-1) and surface roughness in terms of RMS height (RMSheight\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {RMS}}_{\mathrm{height}}$$\end{document}). We examined the performance of FRS-1 in retrieving SM under wheat crop at tillering stage. Results revealed that it is possible to develop a good semi-empirical model (SEM) to estimate SM of the upper soil layer using RISAT-1 SAR data rather than using existing empirical model based on only single parameter, i.e., σo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}$$\end{document}. Near surface SM measurements were related to σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document}, σRVo-σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document} derived using 5.35 GHz (C-band) image of RISAT-1 and RMSheight\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {RMS}}_{\mathrm{height}}$$\end{document}. The roughness component derived in terms of RMSheight\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {RMS}}_{\mathrm{height}}$$\end{document} showed a good positive correlation with σRVo-σRHo(R2=0.65)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}} \, (R^{2} = 0.65)$$\end{document}. By considering all the major influencing factors (σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document}, σRVo-σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document}, and RMSheight\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {RMS}}_{\mathrm{height}}$$\end{document}), an SEM was developed where SM (volumetric) predicted values depend on σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document}, σRVo-σRHo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}_{\mathrm{RV}} {-} \sigma ^{\mathrm{o}}_{\mathrm{RH}}$$\end{document}, and RMSheight\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {RMS}}_{\mathrm{height}}$$\end{document}. This SEM showed R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document} of 0.87 and adjusted R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R^{2}$$\end{document} of 0.85, multiple R=0.94 and with standard error of 0.05 at 95% confidence level. Validation of the SM derived from semi-empirical model with observed measurement (SMObserved\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\hbox {SM}}_{\mathrm{Observed}}$$\end{document}) showed root mean square error (RMSE) = 0.06, relative-RMSE (R-RMSE) = 0.18, mean absolute error (MAE) = 0.04, normalized RMSE (NRMSE) = 0.17, Nash–Sutcliffe efficiency (NSE) = 0.91 (≈1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\approx } 1$$\end{document}), index of agreement (d) = 1, coefficient of determination (R2)=0.87\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(R^{2}) = 0.87$$\end{document}, mean bias error (MBE) = 0.04, standard error of estimate (SEE) = 0.10, volume error (VE) = 0.15, variance of the distribution of differences (Sd2)=0.004\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$({\hbox {S}}_{\mathrm{d}}^{2}) = 0.004$$\end{document}. The developed SEM showed better performance in estimating SM than Topp empirical model which is based only on σo\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma ^{\mathrm{o}}$$\end{document}. By using the developed SEM, top soil SM can be estimated with low mean absolute percent error (MAPE) = 1.39 and can be used for operational applications.
引用
收藏
相关论文
共 52 条
[1]  
Aubert M(2011) Analysis of TerraSAR-X data sensitivity to bare soil moisture, roughness, composition and soil crust Remote Sens. Environ. 115 1801-1810
[2]  
Baghdadi N(2012)Use of TerraSAR-X data to retrieve soil moisture over bare soil agricultural fields IEEE Geosci. Remote Sens. Lett. 9 512-516
[3]  
Zribi M(2009)Soil moisture retrieval from active space borne microwave observations: An evaluation of current techniques Remote Sens. 1 210-242
[4]  
Douaoui A(2000)Soil moisture (water-content) assessment by an airborne scatterometer: The Chernobyl disaster area and the Negev desert; Remote Sens Environ. 71 309-319
[5]  
Loumagne C(1981)Microwave backscatter dependence on surface roughness, soil moisture, and Soil texture. Part III: soil tension; IEEE Trans Geosci. Remote Sens. 19 51-61
[6]  
Baup F(1985)Microwave dielectric behavior of wet soil. 1: Empirical models and experimental observations; IEEE Trans Geosci. Remote Sens. 23 25-34
[7]  
El Hajj M(2004)Generalized refractive mixing dielectric model for moist soils; IEEE Geosci Remote Sens. 42 773-785
[8]  
Garrigues S(2013)Comparative evaluation of horizontal accuracy of elevations of selected ground control points from ASTER and SRTM DEM with respect to CARTOSAT-1 DEM: A case study of Shahjahanpur (Uttar Pradesh) India; Geocarto Int. 28 439-452
[9]  
Baghdadi N(2007)An efficient modeling with GA approach to retrieve soil texture, moisture and roughness from Ers-2 SAR data Prog. Electromagn. Res. 77 121-136
[10]  
Aubert M(1978)Microwave backscatter dependence on surface roughness, soil moisture and soil texture. Part I: Bare soil IEEE Trans. Geosci. Remote Sens. 16 286-295