Hermitian Metric Rigidity for Foliated Vector Bundles

被引:0
作者
R. Quiroga-Barranco
机构
[1] CINVESTAV-IPN,Department de Mathemáticas
来源
Geometriae Dedicata | 1998年 / 71卷
关键词
foliations; rigidity; Hermitian symmetric spaces; bounded symmetric domains Kähler manifolds.;
D O I
暂无
中图分类号
学科分类号
摘要
We show that the canonical isometric imbedding of the symplectic group Sp(n) into R4n2 gives the least-dimensional isometric imbedding into the Euclidean space, even in the local standpoint. We prove this result by calculating the quantity pG determined by the curvature of Sp(n), which serves as an obstruction to the existence of local isometric imbeddings. We also exhibit the estimates on the value pG for the remaining compact classical simple Lie groups, and improve the previous results on the codimension of local isometric imbeddings of these groups.
引用
收藏
页码:287 / 298
页数:11
相关论文
共 7 条
[1]  
Pansu P.(1989)Rigidity of locally homogeneous metrics of negative curvature on the leaves of a foliation Israel J. Math. 68 56-62
[2]  
Zimmer R. J.(1995)Hermitianmetric rigidity on compact foliated manifolds Geom. Dedicata 57 305-315
[3]  
Quiroga R.(1980)Strong rigidity for ergodic actions of semisimple Lie groups Ann. of Math. 112 511-529
[4]  
Zimmer R. J.(1982)Ergodic theory, semisimple Lie groups and foliations by manifolds of negative curvature Inst. Hautes Études Sci. Publ. Math. 55 37-62
[5]  
Zimmer R. J.(1982)On the Mostow rigidity theorem and measurable foliations by hyperbolic space Israel J. Math 43 281-290
[6]  
Zimmer R. J.(1990)Infinitesimal rigidity for smooth actions of discrete subgroups of Lie groups J. Differential Geom. 31 301-322
[7]  
Zimmer R. J.(undefined)undefined undefined undefined undefined-undefined