Soliton dynamics in planar ferromagnets and anti-ferromagnets

被引:7
作者
Lin Fang-hua
Shatah Jalal
机构
[1] New York University,Courant Institute
来源
Journal of Zhejiang University-SCIENCE A | 2003年 / 4卷 / 5期
关键词
Magnetic vortices; Topological vorticity; Conservation law; Solution dynamics; A; O189;
D O I
10.1631/jzus.2003.0503
中图分类号
学科分类号
摘要
The aim of this paper is to present a rigorous mathematical proof of the dynamical laws for the topological solitons (magnetic vortices) in ferromagnets and anti-ferromagnets. It is achieved through the conservation laws for the topological vorticity and the weak convergence methods.
引用
收藏
页码:503 / 510
页数:7
相关论文
共 10 条
[1]  
Hang F. B.(2001)Static theory for planar ferromagnets and antiferromagnets Acta Math. Sinica (Eng. ser.) 17 541-580
[2]  
Lin F. H.(1996)Topology and dynamics in ferromagnetic media Phys. D. 99 81-107
[3]  
Komineas S.(1999)On the incompressible fluid limit and vortex motion law of the nonlinear Schrödinger equation Comm. Math. Phys. 200 249-274
[4]  
Papanicolaou N.(1990)Vortices in the complex scalar fields Phys. D. 43 385-406
[5]  
Lin F. H.(1991)Dynamics of magnetic vortices Nuclear Phys. B 360 425-462
[6]  
Xin J.(1988)Weak solutions and development of singularities of the Comm. Pure and Appl. Math. 41 459-469
[7]  
Neu J.(undefined)(2)-ω-model undefined undefined undefined-undefined
[8]  
Papanicolaou N.(undefined)undefined undefined undefined undefined-undefined
[9]  
Tomaras T. N.(undefined)undefined undefined undefined undefined-undefined
[10]  
Shatah J.(undefined)undefined undefined undefined undefined-undefined