Asymptotic behavior of impulsive neutral delay differential equations with positive and negative coefficients of Euler form

被引:0
作者
Fangfang Jiang
Jianhua Shen
Zhicheng Ji
机构
[1] Jiangnan University,School of Science
[2] Hangzhou Normal University,Department of Mathematics
[3] Jiangnan University,School of IoT Engineering
来源
Advances in Difference Equations | / 2018卷
关键词
Impulse; Neutral differential equation; Unbounded delay; Positive and negative coefficients of Euler form; Constant jump; 34K45; 34D05; 34K20;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we are concerned with asymptotic properties of solutions for a class of neutral delay differential equations with forced term, positive and negative coefficients of Euler form, and constant impulsive jumps of the form {[x(t)−C(t)g(x(τ(t)))]′+P(t)tf(x(αt))−Q(t)tf(x(βt))=h(t),t≥t0>0,t≠tk,x(tk+)−x(tk)=αk,k∈Z+.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \textstyle\begin{cases} [x(t)-C(t)g(x(\tau(t)))]'+ \frac{P(t)}{t}f(x(\alpha t))-\frac {Q(t)}{t}f(x(\beta t))=h(t),\quad t\geq t_{0}>0, t\neq t_{k},\\ x(t_{k}^{+})-x(t_{k})=\alpha_{k},\quad k\in{\mathbb{Z}_{+}}. \end{cases} $$\end{document} By constructing auxiliary functions and applying the technique of considering asymptotic properties of nonoscillatory and oscillatory solutions we establish some sufficient conditions to guarantee that every solution of the system tends to zero as t→+∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$t\to+\infty$\end{document}.
引用
收藏
相关论文
共 52 条
[1]  
Diethelm K.(2002)Analysis of fractional differential equations J. Math. Anal. Appl. 265 229-248
[2]  
Ford N.J.(2016)On two fractional differential inclusions SpringerPlus 5 965-974
[3]  
Baleanu D.(2017)Asymptotic properties of a stochastic nonautonomous competitive system with impulsive perturbations Adv. Differ. Equ. 20 140-157
[4]  
Hedayati V.(2015)Asymptotic behavior of a stochastic non-autonomous predator–prey model with impulsive perturbations Commun. Nonlinear Sci. Numer. Simul. 45 109-118
[5]  
Rezapour Sh.(2017)Stability analysis for impulsive fractional hybrid systems via variational Lyapunov method Commun. Nonlinear Sci. Numer. Simul. 2017 61-77
[6]  
Al Qurashi M.M.(2017)A new method for investigating approximate solutions of some fractional integro-differential equations involving the Caputo–Fabrizio derivative Adv. Differ. Equ. 79 1218-1224
[7]  
Yang L.(2017)A singular fractional integro-differential equation UPB Sci. Bull., Ser. A 7 13-21
[8]  
Tian B.(2016)Investigation of a multi-singular pointwise defined fractional integro-differential equation J. Math. Anal. 371 179-189
[9]  
Wu R.(2013)Some existence results on nonlinear fractional differential equations Philos. Trans. R. Soc. A, Math. Phys. Eng. Sci. 2013 753-763
[10]  
Zou X.(2013)The existence of solutions for a nonlinear mixed problem of singular fractional differential equations Adv. Differ. Equ. 24 1089-1096