A new linearized fourth-order conservative compact difference scheme for the SRLW equations

被引:0
作者
Yuyu He
Xiaofeng Wang
Ruihua Zhong
机构
[1] Minnan Normal University,School of Mathematics and Statistics
来源
Advances in Computational Mathematics | 2022年 / 48卷
关键词
SRLW equations; Reduction order method; Linearized compact difference scheme; Conservation; Convergence; 65M12; 65M70; 65N06;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a novel three-point fourth-order compact operator is considered to construct new linearized conservative compact finite difference scheme for the symmetric regularized long wave (SRLW) equations based on the reduction order method with three-level linearized technique. The discrete conservative laws, boundedness and unique solvability are studied. The convergence order O(τ2+h4)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal {O}(\tau ^{2}+h^{4})$\end{document} in the L∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$L^{\infty }$\end{document}-norm and stability of the present compact scheme are proved by the discrete energy method. Numerical examples are given to support the theoretical analysis.
引用
收藏
相关论文
共 62 条
[1]  
Bai Y(2012)A conservative finite difference scheme for generalized symmetric regularized long wave equations Acta Math. Appl. Sin. 35 458-470
[2]  
Zhang L(1989)New similarity reductions and painlevé analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations J. Phys. A Math. General. 22 3821-3848
[3]  
Clarkson PA(2009)The existence of global attractors for a system of multi-dimensional symmetric regularized wave equations Commun. Nonlinear Sci. Numer. Simul. 14 61-68
[4]  
Fang S(1965)A class of difference schemes of two-dimensional viscous fluid flow Acta Math. Sin. 17 242-258
[5]  
Guo B(1987)The spectral method for symmetric regularized wave equations J. Comput. Math. 5 297-306
[6]  
Qiu H(2022)Numerical analysis of a high-order accurate compact finite difference scheme for the SRLW equation Appl. Math. Comput. 418 126837-5581
[7]  
Guo B(2014)Numerical simulation and convergence analysis of a high-order conservative difference scheme for SRLW equation Appl. Math. Model. 38 5573-103
[8]  
Guo B(2020)A dissipative finite difference Fourier pseudo-spectral method for the symmetric regularized long wave equation with damping mechanism Appl. Numer. Math. 154 90-902
[9]  
He Y(2021)Convergence analysis of the higher-order global mass-preserving numerical method for the symmetric regularized long-wave equation Int. J. Comput. Math. 98 869-31
[10]  
Wang X(2006)A multisymplectic Fourier pseudo-spectral scheme for the SRLW equation and conservation laws Chinese J. Comput. Phys. 23 25-83