Luigi Gatteschi’s work on asymptotics of special functions and their zeros

被引:0
作者
Walter Gautschi
Carla Giordano
机构
[1] Purdue University,Department of Computer Sciences
[2] Università di Torino,Dipartimento di Matematica
来源
Numerical Algorithms | 2008年 / 49卷
关键词
Luigi Gatteschi’s work; Asymptotics; Special functions; Zeros; 26C10; 30C15; 33C10; 33C15; 33C45; 41A60;
D O I
暂无
中图分类号
学科分类号
摘要
A good portion of Gatteschi’s research publications—about 65%—is devoted to asymptotics of special functions and their zeros. Most prominently among the special functions studied figure classical orthogonal polynomials, notably Jacobi polynomials and their special cases, Laguerre polynomials, and Hermite polynomials by implication. Other important classes of special functions dealt with are Bessel functions of the first and second kind, Airy functions, and confluent hypergeometric functions, both in Tricomi’s and Whittaker’s form. This work is reviewed here, and organized along methodological lines.
引用
收藏
页码:11 / 31
页数:20
相关论文
共 56 条
[1]  
Baratella P.(1986/1987)Bounds for the error term in Hilb fromula for Jacobi polynomials Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat. 120 207-223
[2]  
Baratella P.(1991/1992)Remarks on asymptotics for Jacobi polynomials Calcolo 28 129-137
[3]  
Gatteschi L.(1994)A Bernstein-type inequality for the Jacobi polynomial Proc. Amer. Math. Soc. 121 703-709
[4]  
Chow Y.(1989)Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions SIAM J. Math. Anal. 20 744-760
[5]  
Gatteschi L.(1971)Uniform asymptotic expansions of the Jacobi polynomials and an associated function Math. Comp. 25 309-315
[6]  
Wong R.(1985)A uniform asymptotic expansion of the Jacobi polynomials with error bounds Can. J. Math. 37 979-1007
[7]  
Dunster T.M.(1988)Uniform asymptotic expansions of Laguerre polynomials SIAM J. Math. Anal. 19 1232-1248
[8]  
Elliott D.(2001)New asymptotics for the zeros of Whittaker’s functions. In memory of W. Gross Numer. Algorithms 28 159-170
[9]  
Frenzen C.L.(1949)Una formula asintotica per l’approssimazione degli zeri dei polinomi di Legendre Boll. Unione Mat. Ital. 4 240-250
[10]  
Wong R.(1949)Approssimazione asintotica degli zeri dei polinomi ultrasferici Univ. Roma. Ist. Naz. Alta Mat. Rend. Mat. e Appl. 8 399-411