Sobolev-type functions with variable integrability exponent on metric measure spaces

被引:0
作者
A. S. Romanov
机构
[1] Novosibirsk State University,Sobolev Institute of Mathematics
来源
Siberian Mathematical Journal | 2014年 / 55卷
关键词
metric space; measure; Sobolev-type function; embedding theorems;
D O I
暂无
中图分类号
学科分类号
摘要
We consider various embedding theorems for Sobolev-type function classes with variable integrability exponent on a metric space.
引用
收藏
页码:142 / 155
页数:13
相关论文
共 16 条
[1]  
Kovacik O(1991)In spaces Czechoslovak Math. J. 41 592-618
[2]  
Rakosnik J(1996) and Potential Anal. 5 403-415
[3]  
Haj’asz P(1997)Sobolev spaces on an arbitrary metric spaces J. Funct. Anal. 143 221-246
[4]  
Haj’asz P(2007)Traces of Sobolev functions on fractal type sets and characterization of extension domains Siberian Math. J. 48 176-184
[5]  
Martio O(2000)On the traces of Sobolev functions on the boundary of a cusp with a Hölder singularity Studia Math. 143 267-293
[6]  
Romanov A S(1979)Sobolev embeddings with variable exponent Math. Notes 26 796-806
[7]  
Edmunds D(2004)Topology of the space Real Anal. Exchange 30 87-104
[8]  
Rákosník J(2007)([0, 1]) Siberian Math. J. 48 678-693
[9]  
Sharapudinov I I(1998)Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator Rev. Mat. Iberoamericana 14 601-622
[10]  
Harjulehto P(1999)Traces of functions of generalized Sobolev classes Siberian Math. J. 40 931-937