Structure of the Variety of Alternative Algebras with the Lie-Nilpotency Identity of Degree 5

被引:0
作者
S. V. Pchelintsev
机构
[1] Financial University under the Government of the Russian Federation,
[2] St. Petersburg State University,undefined
来源
Siberian Mathematical Journal | 2024年 / 65卷
关键词
Lie-nilpotent algebra; alternative algebra; codimension of a T-ideal; additive basis for a free algebra; center of an algebra; 512.554;
D O I
暂无
中图分类号
学科分类号
摘要
We construct an additive basis for a relatively free alternative algebra of Lie-nilpotent degree 5, describe the associative center and core of this algebra, and find the T-generators of the full center. Also, we give some asymptotic estimate for the codimension of the T-ideal generated by a commutator of degree 5 in a free alternative algebra, and find a finite-dimensional superalgebra that generates the variety of alternative algebras with the Lie-nilpotency of the selfadjoint operator of degree 5.
引用
收藏
页码:139 / 152
页数:13
相关论文
共 16 条
[1]  
Grishin AV(2015)On centers of relatively free associative algebras with a Lie nilpotency identity Sb. Math. 206 1610-1627
[2]  
Pchelintsev SV(2016)Proper central and core polynomials of relatively free associative algebras with identity of Lie nilpotency of degrees 5 and 6 Sb. Math. 207 674-692
[3]  
Grishin AV(2018)Identities of the model algebra of multiplicity 2 Sib. Math. J. 59 1103-1124
[4]  
Pchelintsev SV(2020)Construction and applications of an additive basis for the relatively free associative algebra with the Lie nilpotency identity of degree 5 Sib. Math. J. 61 139-153
[5]  
Pchelintsev SV(2017)Identities of metabelian alternative algebras Sib. Math. J. 58 693-710
[6]  
Pchelintsev SV(2023)Product theorems for alternative algebras and some of their applications Sib. Math. J. 64 374-392
[7]  
Pchelintsev SV(1961)Malcev algebras Trans. Amer. Math. Soc. 101 426-458
[8]  
Pchelintsev SV(2007)The free alternative superalgebra on one odd generator Internat. J. Algebra Comput. 17 1215-1247
[9]  
Sagle AA(2003)A free alternative algebra with the identity Chebyshevskii Sb. (Tula) 4 54-60
[10]  
Shestakov IP(1985)Varieties and Math. USSR-Izv. 25 359-374