Lorentz distributed noncommutative wormhole solutions in extended teleparallel gravity

被引:0
作者
Abdul Jawad
Shamaila Rani
机构
[1] COMSATS Institute of Information Technology,Department of Mathematics
来源
The European Physical Journal C | 2015年 / 75卷
关键词
Null Energy Condition; Weak Energy Condition; Teleparallel Gravity; Wormhole Solution; Throat Radius;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study static spherically symmetric wormhole solutions in extended teleparallel gravity with the inclusion of noncommutative geometry under a Lorentzian distribution. We obtain expressions of matter components for a non-diagonal tetrad. The effective energy-momentum tensor leads to the violation of energy conditions which impose a condition on the normal matter to satisfy these conditions. We explore the noncommutative wormhole solutions by assuming a viable power-law f(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)$$\end{document} and shape function models. For the first model, we discuss two cases in which one leads to teleparallel gravity and the other is for f(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)$$\end{document} gravity. The normal matter violates the weak energy condition for the first case, while there exists a possibility for micro physically acceptable wormhole solution. There exists a physically acceptable wormhole solution for the power-law b(r)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b(r)$$\end{document} model. Also, we check the equilibrium condition for these solutions, which is only satisfied for the teleparallel case, while for the f(T)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f(T)$$\end{document} case, these solutions are less stable.
引用
收藏
相关论文
共 97 条
[1]  
Kamenshchik AY(2001)undefined Phys. Lett. B 511 265-undefined
[2]  
Moschella U(2004)undefined Phys. Lett. B 603 1-undefined
[3]  
Pasquier V(2007)undefined Phys. Lett. B 657 228-undefined
[4]  
Li M(2009)undefined Commun. Theor. Phys. 52 743-undefined
[5]  
Cai RG(2011)undefined Gen. Relativ. Gravit. 43 2661-undefined
[6]  
Wei H(2007)undefined Phys. Rev. D 75 084031-undefined
[7]  
Sheykhi A(2011)undefined Phys. Rev. D 84 024042-undefined
[8]  
Jamil M(2011)undefined JCAP 11 033-undefined
[9]  
Ferraro R(2011)undefined Eur. Phys. J. C. 71 1817-undefined
[10]  
Fiorini F(2011)undefined Phys. Rev. D 84 083518-undefined