Kernel B-splines and interpolation

被引:0
作者
M. Bozzini
L. Lenarduzzi
R. Schaback
机构
[1] Università di Milano Bicocca,Dip. Mat. Appl.
[2] IMATI CNR,undefined
[3] Universität Göttingen,undefined
来源
Numerical Algorithms | 2006年 / 41卷
关键词
positive definite functions; kernels; B-splines; multiquadric; solvability; 41A05; 65D10;
D O I
暂无
中图分类号
学科分类号
摘要
This paper applies difference operators to conditionally positive definite kernels in order to generate kernel\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}-splines that have fast decay towards infinity. Interpolation by these new kernels provides better condition of the linear system, while the kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}-spline inherits the approximation orders from its native kernel. We proceed in two different ways: either the kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}-spline is constructed adaptively on the data knot set \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X$$\end{document}, or we use a fixed difference scheme and shift its associated kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}-spline around. In the latter case, the kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}-spline so obtained is strictly positive in general. Furthermore, special kernel \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B$$\end{document}-splines obtained by hexagonal second finite differences of multiquadrics are studied in more detail. We give suggestions in order to get a consistent improvement of the condition of the interpolation matrix in applications.
引用
收藏
页码:1 / 16
页数:15
相关论文
共 8 条
[1]  
Dyn N.(1986)Numerical procedures for surface fitting of scattered data by radial functions SIAM J. Sci. Statist. Comput. 7 639-659
[2]  
Levin D.(1995)A generalization of de Boor’s stability result and symmetric preconditioning Advances in Computational Mathematics 3 353-367
[3]  
Rippa S.(1995)Error estimates and condition numbers for radial basis function interpolation Adv. Comput. Math. 3 251-264
[4]  
Jetter K.(1996)Approximation by radial basis functions with finitely many centers Constr. Approx. 12 331-340
[5]  
Stöckler J.(1997)Optimal recovery in translation-invariant spaces of functions Ann. Numer. Math. 4 547-555
[6]  
Schaback R.(undefined)undefined undefined undefined undefined-undefined
[7]  
Schaback R.(undefined)undefined undefined undefined undefined-undefined
[8]  
Schaback R.(undefined)undefined undefined undefined undefined-undefined