共 77 条
[41]
Ahumada H., Grinblat G., Uzal L., Granitto P., Ceccatto A., REPMAC: A new hybrid approach to highly imbalanced classification problems, Eighth International Conference on Hybrid Intelligent Systems, (2008)
[42]
Bekkar M., Alitouche T., Imbalanced data learning approaches review, Int J Data Mining Knowl Manag Process, 3, 4, pp. 15-33, (2013)
[43]
Khoshgoftaar T.M., Golawala M., Hulse J., An empirical study of learning from imbalanced data using random forest, 19Th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007), 2, pp. 310-317, (2007)
[44]
Chen C., Liaw A., Breiman L., Using Random Forest to Learn Imbalanced Data, (2004)
[45]
Galar M., Fernandez A., Barrenechea E., Bustince H., Herrera F., A review on ensembles for the class imbalance problem: bagging-, boosting-, and hybrid-based approaches, IEEE Trans Syst Man Cybern C Appl Rev, 42, 4, pp. 463-484, (2012)
[46]
Rio S., Lopez V., Benitez J., Herrera F., On the use of MapReduce for imbalanced Big Data using random forest, Inf Sci, 285, pp. 112-137, (2014)
[47]
Apache Mahout. 2017
[48]
Landset S., Khoshgoftaar T.M., Richter A., Hasanin T., A survey of open source tools for machine learning with big data in the Hadoop ecosystem, J Big Data, 2, 24, pp. 1-36, (2015)
[49]
Frank E., Hall M.A., Witten I.H., The WEKA Workbench: data mining: practical machine learning tools and techniques, (2016)
[50]
(2014)