Restrained domination in cubic graphs

被引:0
作者
Johannes H. Hattingh
Ernst J. Joubert
机构
[1] Georgia State University,Department of Mathematics and Statistics
[2] University of Johannesburg,Department of Mathematics
来源
Journal of Combinatorial Optimization | 2011年 / 22卷
关键词
Graph; Cubic graph; Domination; Restrained domination; Upper bound; Lower bound;
D O I
暂无
中图分类号
学科分类号
摘要
Let G=(V,E) be a graph. A set S⊆V is a restrained dominating set if every vertex in V−S is adjacent to a vertex in S and to a vertex in V−S. The restrained domination number of G, denoted γr(G), is the smallest cardinality of a restrained dominating set of G. A graph G is said to be cubic if every vertex has degree three. In this paper, we study restrained domination in cubic graphs. We show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma_{r}(G)\geq \frac{n}{4}$\end{document} , and characterize the extremal graphs achieving this lower bound. Furthermore, we show that if G is a cubic graph of order n, then \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\gamma _{r}(G)\leq \frac{5n}{11}.$\end{document} Lastly, we show that if G is a claw-free cubic graph, then γr(G)=γ(G).
引用
收藏
页码:166 / 179
页数:13
相关论文
共 39 条
  • [1] Chen XG(2005)On total restrained domination in graphs Czechoslov Math J 55 165-173
  • [2] Ma DX(2006)Trees with equal domination and restrained domination numbers J Glob Optim 34 597-607
  • [3] Sun L(2007)On equality in an upper bound for the restrained and total domination numbers of a graph Discrete Math 307 2845-2852
  • [4] Dankelmann P(1999)Restrained domination in graphs Discrete Math 203 61-69
  • [5] Hattingh JH(2000)Restrained domination in trees Discrete Math 211 1-9
  • [6] Henning MA(2000)Restrained domination in graphs with minimum degree two J Comb Math Comb Comput 35 239-254
  • [7] Swart HC(2008)Restrained domination excellent trees Ars Comb 87 337-351
  • [8] Dankelmann P(2008)Nordhaus-Gaddum results for restrained domination and total restrained domination in graphs Discrete Math 308 1080-1087
  • [9] Day D(1999)Graphs with large restrained domination number Discrete Math 197/198 415-429
  • [10] H Hattingh J(2009)Total restrained domination in cubic graphs Graphs Comb 25 341-350