An efficient numerical simulation of the two-dimensional semilinear wave equation

被引:0
|
作者
Talha Achouri
机构
[1] Shaqra University,Department of Mathematics, Al
[2] Laboratoire Physique,Quwayiyah College of Science and Humanities
[3] Mathématique,Higher Institute of Applied Sciences and Technology of Sousse
[4] Modélisation Quantique et Conception Mécanique,undefined
[5] LR18ES45,undefined
[6] University of Sousse,undefined
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Semilinear wave equation; Finite element method; Convergence analysis; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A fully discrete finite element approximations of the solution for a semilinear wave equation is considered and analyzed in this paper. The optimal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error estimates for r-th order FEMs (r=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r=1, 2)$$\end{document} are derived without any restriction on the time step size. Numerical examples are given to support our theoretical results and demonstrate the efficiency of the methods.
引用
收藏
相关论文
共 50 条
  • [41] Two-dimensional numerical manifold method with multilayer covers
    Liu ZhiJun
    Zheng Hong
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2016, 59 (04) : 515 - 530
  • [42] Two-dimensional numerical manifold method with multilayer covers
    ZhiJun Liu
    Hong Zheng
    Science China Technological Sciences, 2016, 59 : 515 - 530
  • [43] Numerical homogenization of nonlinear viscoplastic two-dimensional polycrystals
    Legoll, Frédéric
    Computational and Applied Mathematics, 2004, 23 (2-3) : 309 - 325
  • [44] Numerical Investigation for a Two-Dimensional Moving Flapping Wing
    Hussien, Hussien A. A. H.
    Guaily, Amr Gamal
    Rahman, Mohamed M. Abdel
    UNMANNED SYSTEMS, 2024,
  • [45] Two-dimensional numerical manifold method with multilayer covers
    LIU ZhiJun
    ZHENG Hong
    Science China(Technological Sciences), 2016, 59 (04) : 515 - 530
  • [46] Numerical homogenization of nonlinear viscoplastic two-dimensional polycrystals
    Legoll, Frederic
    COMPUTATIONAL & APPLIED MATHEMATICS, 2004, 23 (2-3): : 309 - 325
  • [47] Simulation Analysis of Spatially Arterial Pulse Wave using Two-dimensional Array Sensors with Magnetoresistive Device
    Kim, M. S.
    Kim, S. W.
    Kim, G. W.
    Lee, S. J.
    Lee, S. G.
    Lee, H. S.
    Park, D. H.
    Hwang, D. G.
    Lee, S. S.
    JOURNAL OF THE KOREAN MAGNETICS SOCIETY, 2005, 15 (06): : 307 - 310
  • [48] Approximate solution of two-dimensional Sobolev equation using a mixed Lucas and Fibonacci polynomials
    Haq, Sirajul
    Ali, Ihteram
    ENGINEERING WITH COMPUTERS, 2022, 38 (SUPPL 3) : 2059 - 2068
  • [49] A numerical method for two-dimensional nonlinear modified time-fractional fourth-order diffusion equation
    He, Haiyan
    Liang, Kaijie
    Yin, Baoli
    INTERNATIONAL JOURNAL OF MODELING SIMULATION AND SCIENTIFIC COMPUTING, 2019, 10 (01)
  • [50] A space-time Petrov-Galerkin method for the two-dimensional regularized long-wave equation
    Zhao, Zhihui
    Li, Hong
    Gao, Wei
    APPLIED NUMERICAL MATHEMATICS, 2024, 198 : 276 - 294