An efficient numerical simulation of the two-dimensional semilinear wave equation

被引:0
|
作者
Talha Achouri
机构
[1] Shaqra University,Department of Mathematics, Al
[2] Laboratoire Physique,Quwayiyah College of Science and Humanities
[3] Mathématique,Higher Institute of Applied Sciences and Technology of Sousse
[4] Modélisation Quantique et Conception Mécanique,undefined
[5] LR18ES45,undefined
[6] University of Sousse,undefined
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Semilinear wave equation; Finite element method; Convergence analysis; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A fully discrete finite element approximations of the solution for a semilinear wave equation is considered and analyzed in this paper. The optimal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error estimates for r-th order FEMs (r=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r=1, 2)$$\end{document} are derived without any restriction on the time step size. Numerical examples are given to support our theoretical results and demonstrate the efficiency of the methods.
引用
收藏
相关论文
共 50 条