An efficient numerical simulation of the two-dimensional semilinear wave equation

被引:0
|
作者
Talha Achouri
机构
[1] Shaqra University,Department of Mathematics, Al
[2] Laboratoire Physique,Quwayiyah College of Science and Humanities
[3] Mathématique,Higher Institute of Applied Sciences and Technology of Sousse
[4] Modélisation Quantique et Conception Mécanique,undefined
[5] LR18ES45,undefined
[6] University of Sousse,undefined
来源
Computational and Applied Mathematics | 2022年 / 41卷
关键词
Semilinear wave equation; Finite element method; Convergence analysis; 65N30;
D O I
暂无
中图分类号
学科分类号
摘要
A fully discrete finite element approximations of the solution for a semilinear wave equation is considered and analyzed in this paper. The optimal H1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H^1$$\end{document} error estimates for r-th order FEMs (r=1,2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r=1, 2)$$\end{document} are derived without any restriction on the time step size. Numerical examples are given to support our theoretical results and demonstrate the efficiency of the methods.
引用
收藏
相关论文
共 50 条
  • [1] An efficient numerical simulation of the two-dimensional semilinear wave equation
    Achouri, Talha
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (08)
  • [2] Finite difference schemes for the two-dimensional semilinear wave equation
    Achouri, Talha
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (01) : 200 - 221
  • [3] Compact difference scheme for the two-dimensional semilinear wave equation
    Aloraini, Najla M.
    Achouri, Talha
    APPLIED NUMERICAL MATHEMATICS, 2024, 202 : 173 - 188
  • [4] Efficient numerical algorithm with the second-order time accuracy for a two-dimensional nonlinear fourth-order fractional wave equation
    Wang, Jiarui
    Liu, Yang
    Wen, Cao
    Li, Hong
    RESULTS IN APPLIED MATHEMATICS, 2022, 14
  • [5] NUMERICAL APPROXIMATION OF DISCONTINUOUS SOLUTIONS OF THE SEMILINEAR WAVE EQUATION
    Cao, Jiachuan
    Li, Buyang
    Lin, Yanping
    Yao, Fangyan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2025, 63 (01) : 214 - 238
  • [6] On the numerical solution of two-dimensional Rosenau–Burgers (RB) equation
    Khaled Omrani
    Hajer Debebria
    Khedidja Bayarassou
    Engineering with Computers, 2022, 38 : 715 - 726
  • [7] Energy conservation issues in the numerical solution of the semilinear wave equation
    Brugnano, L.
    Frasca Caccia, Gianluca
    Iavernaro, F.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 842 - 870
  • [8] Numerical solution of a two-dimensional Helmholtz equation with Dirichlet boundary conditions
    Kahlaf, Saja J.
    Mhassin, Ali A.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2021, 24 (04) : 971 - 982
  • [9] On the numerical solution of two-dimensional Rosenau-Burgers (RB) equation
    Omrani, Khaled
    Debebria, Hajer
    Bayarassou, Khedidja
    ENGINEERING WITH COMPUTERS, 2022, 38 (01) : 715 - 726
  • [10] Accurate radiation boundary conditions for the two-dimensional wave equation on unbounded domains
    Thompson, LL
    Huan, RN
    He, DT
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2001, 191 (3-5) : 311 - 351