6-regular partitions: new combinatorial properties, congruences, and linear inequalities

被引:0
作者
Cristina Ballantine
Mircea Merca
机构
[1] College of The Holy Cross,Department of Mathematics and Computer Science
[2] University Politehnica of Bucharest,Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center
[3] Academy of Romanian Scientists,undefined
来源
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas | 2023年 / 117卷
关键词
Partitions; Theta series; Theta products; 11P81; 11P82; 05A19; 05A20;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the number of the 6-regular partitions of n, b6(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_6(n)$$\end{document}, and give infinite families of congruences modulo 3 (in arithmetic progression) for b6(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_6(n)$$\end{document}. We also consider the number of the partitions of n into distinct parts not congruent to ±2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm 2$$\end{document} modulo 6, Q2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_2(n)$$\end{document}, and investigate connections between b6(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_6(n)$$\end{document} and Q2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_2(n)$$\end{document} providing new combinatorial interpretations for these partition functions. In this context, we discover new infinite families of linear inequalities involving Euler’s partition function p(n). Infinite families of linear inequalities involving the 6-regular partition function b6(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$b_6(n)$$\end{document} and the distinct partition function Q2(n)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Q_2(n)$$\end{document} are proposed as open problems.
引用
收藏
相关论文
共 81 条
  • [1] Ahmed Z(2016)New congruences for Ramanujan J. 40 649-668
  • [2] Baruah ND(2010)-regular partitions for Ramanujan J. 23 169-181
  • [3] Andrews GE(2012)Arithmetic properties of partitions with even parts distinct J. Combin. Theory Ser. A 119 1639-1643
  • [4] Hirschhorn MD(2018)The truncated pentagonal number theorem J. Combin. Theory Ser. A 154 610-619
  • [5] Sellers JA(2020)Truncated theta series and a problem of Guo and Zeng Ann. Combin. 24 47-54
  • [6] Andrews GE(2020)On the number of even parts in all partitions of J. Integer Seq. 23 11-290
  • [7] Merca M(2019) into distinct parts Ars Math. Contemp. 17 277-1779
  • [8] Andrews GE(2020)The minimal excludant in integer partitions Sém. Lothar. Combin. 84B Article # 23-971
  • [9] Merca M(2021)On identities of Watson type Int. J. Number Theory 17 1765-185
  • [10] Andrews GE(2022)The minimal excludant and colored partitions Ramanujan J. 58 957-44