Nonnegative curvature and conullity of the curvature tensor

被引:0
|
作者
Thomas G. Brooks
机构
[1] University of Pennsylvania,
来源
关键词
Nonnegative sectional curvature; Conullity 2; Curvature;
D O I
暂无
中图分类号
学科分类号
摘要
The conullity of a curvature tensor is the codimension of its kernel. We consider the cases of conullity two in any dimension and conullity 3 in dimension four. We show that these conditions are compatible with nonnegative sectional curvature only if either the manifold is diffeomorphic to Rn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^n$$\end{document} or the universal cover is an isometric product with a Euclidean factor. Moreover, we show that finite volume manifolds with conullity 3 are locally products.
引用
收藏
页码:555 / 566
页数:11
相关论文
共 50 条