Compact Manifolds Covered by a Torus

被引:0
作者
Jean-Pierre Demailly
Jun-Muk Hwang
Thomas Peternell
机构
[1] Université de Grenoble I,Institut Fourier
[2] School of Mathematics,KIAS
[3] Universität Bayreuth,Mathematisches Institut
来源
Journal of Geometric Analysis | 2008年 / 18卷
关键词
Complex torus; Abelian variety; Projective space; Kähler manifold; Albanese morphism; Fundamental group; Étale cover; Ramification divisor; Nef divisor; Nef tangent bundle; Anti-canonical line bundle; Numerically flat vector bundle; 14J40; 14C30; 32J25;
D O I
暂无
中图分类号
学科分类号
摘要
Let X be a compact complex manifold which is the image of a complex torus by a holomorphic surjective map A→X. We prove that X is Kähler and that up to a finite étale cover, X is a product of projective spaces by a torus.
引用
收藏
页码:324 / 340
页数:16
相关论文
共 18 条
[1]  
Campana F.(1981)Coréduction algébrique d’un espace analytique faiblement kählérien compact Invent. Math. 63 187-223
[2]  
Debarre O.(1989)Images lisses d’une variété abélienne simple C. R. Acad. Sci. Paris 309 119-122
[3]  
Demailly J.-P.(1982)Estimations Ann. Sci. École Norm. Suppl. 4e Sér. 15 457-511
[4]  
Demailly J.-P.(1992) pour l’opérateur J. Algebraic Geom. 1 361-409
[5]  
Demailly J.-P.(2004) d’un fibré vectoriel holomorphe semi-positif au-dessus d’une variété kählérienne complète Ann. Math. 159 1247-1274
[6]  
Pǎun M.(1994)Regularization of closed positive currents and intersection theory J. Algebraic Geom. 3 295-345
[7]  
Demailly J.-P.(2001)Numerical characterization of the Kähler cone of a compact Kähler manifold Math. Z. 238 89-100
[8]  
Peternell Th.(1985)Compact complex manifolds with numerically effective tangent bundles Invent. Math. 79 567-588
[9]  
Schneider M.(1967)Projective manifolds dominated by abelian varieties Am. Math. Soc. Transl. II. Ser. 63 51-177
[10]  
Hwang J.M.(1987)Pluricanonical systems on minimal algebraic varieties Adv. Stud. Pure Math. 10 551-590