An extragradient method for equilibrium problems on Hadamard manifolds

被引:0
作者
J. X. Cruz Neto
P. S. M. Santos
P. A. Soares
机构
[1] DM/UFPI,
[2] CMRV/UFPI,undefined
[3] DM/UESPI,undefined
来源
Optimization Letters | 2016年 / 10卷
关键词
Equilibrium problem; Hadamard manifold; Convexity ; Extragradient method;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an extragradient algorithm for solving equilibrium problems on Hadamard manifolds to the case where the equilibrium bifunction is not necessarily pseudomonotone. Under mild assumptions, we establish global convergence results. We show that the multiobjective optimization problem satisfies all the hypotheses of our result of convergence, when formulated as an equilibrium problem.
引用
收藏
页码:1327 / 1336
页数:9
相关论文
共 56 条
[1]  
Bento GC(2014)Finite termination of the proximal point method for convex functions on Hadamard manifolds Optimization 63 1281-1288
[2]  
Cruz Neto JX(2013)A subgradient method for multiobjective optimization on Riemannian manifolds J. Optim. Theory Appl. 159 125-137
[3]  
Bento GC(1996)Generalized monotone bifunctions and equilibrium problems J. Optim. Theory Appl. 90 31-43
[4]  
Cruz Neto JX(1994)From optimization and variational inequalities to equilibrium problems Math. Stud. 63 123-145
[5]  
Bianchi M(1972)A remark on Ky Fan’s minimax principle Boll. Un. Mat. Ital. 6 293-300
[6]  
Schaible S(2012)Equilibrium problems in Hadamard manifolds J. Math. Anal. Appl. 388 61-77
[7]  
Blum E(2002)Contributions to the study of monotone vector fields Acta Math. Hungar. 94 307-320
[8]  
Oettli W(1961)A generalization of Tychonoff’s fixed point theorem Math. Ann. 142 305-310
[9]  
Brézis H(2005)Singularities of monotone vector fields and an extragradient-type algorithm J. Global Optim. 31 133-151
[10]  
Nirenberg L(2002)Proximal point algorithm on Riemannian manifold Optimization 51 257-270