Influence of casing contouring on flutter boundaries of a jet engine fan

被引:0
作者
Iseni S. [1 ]
Micallef D. [1 ]
Engelmann D. [1 ]
Mailach R. [2 ]
Nicke E. [3 ]
di Mare F. [1 ]
机构
[1] Lehrstuhl für Thermische Turbomaschinen und Flugtriebwerke, Institut für Energietechnik, Ruhr-Universität Bochum, IC E2-63, Universitätsstr. 150, Bochum
[2] TU Dresden, Institut für Strömungsmechanik, Dresden
[3] Abteilung Fan und Verdichter, DLR, Institut für Antriebstechnik, Linder Höhe, Cologne
关键词
Aeroelasticity; Fan casing optimization; Flutter margin; Influence coefficient method; Transonic stall flutter; Traveling wave method; Unstalled flutter;
D O I
10.1007/s13272-018-0351-y
中图分类号
学科分类号
摘要
This paper describes a detailed flutter analysis of fan casing contour modifications on a scaled high-speed fan to investigate the influence and effect on flutter boundaries. The flutter analysis focusses on discrete selected members from a previous multidisciplinary study of an automated aero-acoustic optimization with respect to the overall engine performance. The aerodynamic baseline performance of the high-bypass ratio fan is validated with measured rig data using Reynolds-averaged Navier–Stokes (RANS) CFD simulations. Flutter stability predictions are based on the energy method in traveling wave and influence the coefficient formulation using a multi-passage fan assembly in a wide engine operating range. Transonic stall flutter occurs for the first bending mode of blade vibration at part speed, where a few design members show an increased stabilizing aeroelastic behavior especially at approach flight condition. In contrast to that, the results indicate a destabilizing flutter stability effect for certain casing designs at cruise speed related to higher mass flows near choke, which is identified as a transonic unstalled flutter type. Aerodynamic key parameters for the flutter onset mechanism have proved to be the shock/boundary layer interactions in tip region of the fan suction side, which leads to flow separation. A second mechanism is driven by the additional blade vibration in combination with the interaction of shock and tip clearance flow as well as the incoming flow. © 2018, Deutsches Zentrum für Luft- und Raumfahrt e.V.
引用
收藏
页码:805 / 815
页数:10
相关论文
共 24 条
  • [1] Vahdati M., Simpson G., Imregun M., Mechanisms for Wide-Chord Fan Blade Flutter, ASME J. Eng. Gas Turbines Power., 133, 4, (2011)
  • [2] Stapelfeldt S., Vahdati M., On the importance of engine-representative models for fan flutter predictions, ASME Paper, pp. GT2017-64167, (2017)
  • [3] Srinivasan A.V., Flutter and resonant vibration characteristics of engine blades, ASME. J. Eng. Gas Turbines Power, 119, 4, pp. 742-775, (1997)
  • [4] Vahdati M., Smith N., Zhao F., Influence of intake on fan blade flutter, ASME. J. Turbomach., 137, 8, (2015)
  • [5] Zhao F., Nipkau J., Vahdati M., Influence of acoustic reflections on flutter stability of an embedded blade row, Proc. Inst. Mech. Eng. Part A-J. Power Energy, 230, pp. 29-43, (2016)
  • [6] Lee K., Wilson M., Vahdati M., Numerical study on aeroelastic instability for a low-speed fan, ASME. J. Turbomach., 139, 7, (2017)
  • [7] Vahdati M., Cumpsty N., aeroelastic instability in transonic fans, ASME. J. Eng. Gas Turbines Power, 138, 2, (2015)
  • [8] Marshall J.G., Imregun M., A review of aeroelasticity methods with emphasis on turbomachinery applications, J. Fluids Struct., 10, pp. 237-267, (1996)
  • [9] Aulich A.-L., Sauer T., Iseni S., Moreau A., Peitsch D., Mailach R., Micallef D., Enghardt L., Nicke E., Fan casing contouring under consideration of aeroacoustics, mechanics, aeroelasticity, and whole engine performance, CEAS Aeronaut. J., 8, 19, pp. 157-166, (2016)
  • [10] Moreau A., Aulich A.-L., Jaron R., Nicke E., Enghardt L., Optimization of Casing Contours in Aero-Engine Fan Stage with Emphasis on Rotor-Stator Interaction Noise, (2016)