Planar Graphs Without Adjacent Cycles of Length at Most Five are (2, 0, 0)-Colorable

被引:0
作者
Xiangwen Li
Qin Shen
Fanyu Tian
机构
[1] Central China Normal University,School of Mathematics and Statistics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2021年 / 44卷
关键词
Planar graph; Coloring; Improper coloring; Discharge method; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
A graph G is (d1,d2,…,dk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(d_{1},d_{2},\ldots ,d_{k})$$\end{document}-colorable if the vertex set of G can be partitioned into subsets V1,V2,…,Vk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{1}, V_{2},\ldots , V_{k}$$\end{document} such that the subgraph G[Vi]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$G[V_{i}]$$\end{document} induced by Vi\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$V_{i}$$\end{document} has maximum degree at most di\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d_{i}$$\end{document} for i=1,2,…,k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$i = 1, 2, \ldots , k$$\end{document}. Novosibirsk’s Conjecture (Sib lektron Mat Izv 3:428–440, 2006) says that every planar graph without 3-cycles adjacent to cycles of length 3 or 5 is 3-colorable. Borodin et al. (Discrete Math 310: 167–173, 2010) asked whether every planar graph without adjacent cycles of length at most 5 is 3-colorable. Cohen-Addad et al. (J Comb Theory Ser B 122:452–456, 2017) gave a negative answer to both Novosibirsk’s conjecture and Borodin et al.’s problem. Zhang et al. (Discrete Math 339:3032–3042, 2016) asked whether every planar graph without adjacent cycles of length at most 5 is (1, 0, 0)-colorable. In this paper, we show that every planar graph without adjacent cycles of length at most five is (2, 0, 0)-colorable, which improves the result of Chen et al. (Discrete Math 339:886–905, 2016) who proved that every planar graph without cycles of length 4 and 5 is (2, 0, 0)-colorable.
引用
收藏
页码:1167 / 1194
页数:27
相关论文
共 34 条
  • [1] Borodin OV(2004)A sufficient condition for planar graphs to be Diskret. Anal. Issled. Oper. 10 3-11
  • [2] Glebov AN(2011)-colorable J. Graph Theory 66 1-31
  • [3] Borodin OV(2003)Planar graphs with neither 5-cycles nor close 3-cycles are 3-colorable J. Comb. Theory Ser. B 88 17-27
  • [4] Glebov AN(2005)A sufficient condition for planar graphs to be J. Comb. Theory Ser. B 93 303-311
  • [5] Borodin OV(2006)-colorable Sib. lektron. Mat. Izv. 3 428-440
  • [6] Raspaud A(2010)Planar graphs without cycles of length from 4 to 7 are 3-colorable Discrete Math. 310 167-173
  • [7] Borodin OV(2016)Planar graphs without triangles adjacent to cycles of length from 3 to 9 are 3-colorable Discrete Math. 339 886-905
  • [8] Glebov AN(2017)Planar graphs without adjacent cycles of length at most seven are 3-colorable J. Comb. Theory Ser. B 122 452-456
  • [9] Raspaud AR(1959)Planar graphs without cycles of length 4 or 5 are Math.-Nat. Reihe. 8 109-120
  • [10] Salavatipour MR(2015)-colorable Eur. J. Combin. 49 240-249