Distribution of q-additive functions on the set of primes

被引:0
作者
I. Kátai
机构
[1] Eōtvōos Loránd University,Department of Computer Algebra
来源
Lithuanian Mathematical Journal | 2007年 / 47卷
关键词
-ary expansions; -multiplicative functions on primes; function classes;
D O I
暂无
中图分类号
学科分类号
摘要
We characterize the q-multiplicative functions which belong to \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}^\alpha $$ \end{document} or \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\mathcal{L}^* $$ \end{document} = the set of uniformly summable functions on the set of primes.
引用
收藏
页码:24 / 31
页数:7
相关论文
共 9 条
[1]  
Erdős P.(1946)On the distribution function of additive functions Ann. of Math. 47 1-20
[2]  
Kátai I.(1986)Distribution of digits of primes in Acta Math. Hungar. 47 341-359
[3]  
Erdős P.(1948)-ary canonical forms Indag. Math. 10 370-378
[4]  
Turán P.(1980)On a problem in the theory of uniform distribution I. Math. Z. 172 255-271
[5]  
Indlekofer K.-H.(2002)A mean value theorem for multiplicative functions Publ. Math. Debrecen 61 393-402
[6]  
Indlekofer K.-H.(1989)On Proc. London Math. Soc. 53 209-289
[7]  
Kátai I.(undefined)-multiplicative functions undefined undefined undefined-undefined
[8]  
Lee Y.-W.(undefined)Additive and multiplicative functions on shifted primes undefined undefined undefined-undefined
[9]  
Hildebrand A.(undefined)undefined undefined undefined undefined-undefined