2D Seiberg-like dualities for orthogonal gauge groups

被引:0
作者
Hyungchul Kim
Sungjoon Kim
Jaemo Park
机构
[1] Harvard University,Center of Mathematical Sciences and Applications
[2] Harvard University,Jefferson Physical Laboratory
[3] Device Solution Business,undefined
[4] Samsung Electronics Co.,undefined
[5] LTD,undefined
[6] Department of Physics,undefined
[7] POSTECH,undefined
来源
Journal of High Energy Physics | / 2019卷
关键词
Duality in Gauge Field Theories; Field Theories in Lower imensions; Supersymmetric Gauge Theory;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the analogue of Seiberg duality for two-dimensional N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = (2, 2) gauge theory with orthogonal gauge groups and with fundamental chiral multiplets proposed by Hori. Following Hori, when we consider O(k) gauge group as the (semi)-direct product of SO(k) ⋉ Z2, we have to consider two kinds of the theories O±(k) depending on the orbifold action of Z2. We give the evidences for the proposed dualities by working out the elliptic genus of dual pair. The matching of the elliptic genus is worked out perfectly for the proposed dualities.
引用
收藏
相关论文
共 47 条
[1]  
Aharony O(2013)3 JHEP 07 149-undefined
[2]  
Razamat SS(2007) 4 JHEP 05 079-undefined
[3]  
Seiberg N(2015)= Commun. Math. Phys. 334 1483-undefined
[4]  
Willett B(2014) = (2, 2) JHEP 03 080-undefined
[5]  
Hori K(2014)2 Lett. Math. Phys. 104 465-undefined
[6]  
Tong D(2015) = 2 Commun. Math. Phys. 333 1241-undefined
[7]  
Benini F(2015) 2 Commun. Math. Phys. 340 47-undefined
[8]  
Cremonesi S(2015) = 2 Gauge JHEP 11 163-undefined
[9]  
Gadde A(2016) 2 JHEP 04 183-undefined
[10]  
Gukov S(2017) = (2, 2) JHEP 10 035-undefined