Earthquake pattern analysis using subsequence time series clustering

被引:0
作者
Rahul Kumar Vijay
Satyasai Jagannath Nanda
机构
[1] Banasthali Vidyapith,Department of Computer Science
[2] Malaviya National Institute of Technology Jaipur,Department of Electronics and Communication Engineering
来源
Pattern Analysis and Applications | 2023年 / 26卷
关键词
Earthquake time series; Subsequence clustering; Homogeneous Poisson process; Earthquake catalogs; Coefficient of Variation.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a subsequence time-series clustering algorithm is proposed to identify the strongly coupled aftershocks sequences and Poissonian background activity from earthquake catalogs of active regions. The proposed method considers the inter-event time statistics between the successive pair of events for characterizing the nature of temporal sequences and observing their relevance with earthquake epicenters and magnitude information simultaneously. This approach categorizes the long-earthquake time series into the finite meaningful temporal sequences and then applies the clustering mechanism to the selective sequences. The proposed approach is built on two phases: (1) a Gaussian kernel-based density estimation for finding the optimal subsequence of given earthquake time-series, and (2) inter-event time (Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document}) and distance-based observation of each subsequence for checking the presence of highly correlated aftershock sequences (hot-spots) in it. The existence of aftershocks is determined based on the coefficient of variation (COV). A sliding temporal window on Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document} with earthquake’s magnitude M is applied on the selective subsequence to filter out the presence of time-correlated events and make the meaningful time stationary Poissonian subsequences. This proposed approach is applied to the regional Sumatra-Andaman (2000–2021) and worldwide ISC-GEM (2000–2016) earthquake catalog. Simulation results indicate that meaningful subsequences (background events) can be modeled by a homogeneous Poisson process after achieving a linear cumulative rate and time-independent λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} in the exponential distribution of Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document}. The relations COVa(T)>COVo(T)>(COVb(T)≈1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$COV_{a}(T)>COV_{o}(T)> (COV_{b}(T)\approx 1)$$\end{document} and COVa(d)>COVo(d)>COVb(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$COV_{a}(d)>COV_{o}(d)>COV_{b}(d)$$\end{document} are achieved for both studied catalogs. Comparative analysis justifies the competitive performance of the proposed approach to the state-of-art approaches and recently introduced methods.
引用
收藏
页码:19 / 37
页数:18
相关论文
共 102 条
[11]  
Engdahl ER(2013)Monitoring aseismic forcing in fault zones using earthquake time series Bull Seismol Soc Am 103 5479-815
[12]  
Storchak DA(2018)Stochastic modeling of nonstationary earthquake time series with long-term clustering effects Phys Rev E 98 1-63
[13]  
Gardner J(2011)Artificial neural networks for earthquake prediction using time series magnitude data or seismic electric signals Expert Syst Appl 38 810-103
[14]  
Knopoff L(2018)Big earth observation time series analysis for monitoring brazilian agriculture ISPRS J Photogramm Remote Sens 145 48-1627
[15]  
Gupta A(2020)Covid-19 transmission in mainland china is associated with temperature and humidity: A time-series analysis Sci Total Environ 728 21-728
[16]  
Gupta HP(1985)Second-order moment of central california seismicity, 1969–1982 J Geophys Res Solid Earth 90 611-36648
[17]  
Biswas B(2020)A time-series clustering methodology for knowledge extraction in energy consumption data Expert Syst Appl 160 95-380
[18]  
Dutta T(2012)Seismicity declustering Commun Online Res Stat Seism Anal 10 1619-undefined
[19]  
Javed A(2013)Public release of the isc-gem global instrumental earthquake catalogue (1900–2009) Seism Res Lett 84 723-undefined
[20]  
Lee BS(2015)The ISC-GEM global instrumental earthquake catalogue (1900–2009) Introd Phys Earth Planet Int 239 36637-undefined