Earthquake pattern analysis using subsequence time series clustering

被引:0
作者
Rahul Kumar Vijay
Satyasai Jagannath Nanda
机构
[1] Banasthali Vidyapith,Department of Computer Science
[2] Malaviya National Institute of Technology Jaipur,Department of Electronics and Communication Engineering
来源
Pattern Analysis and Applications | 2023年 / 26卷
关键词
Earthquake time series; Subsequence clustering; Homogeneous Poisson process; Earthquake catalogs; Coefficient of Variation.;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, a subsequence time-series clustering algorithm is proposed to identify the strongly coupled aftershocks sequences and Poissonian background activity from earthquake catalogs of active regions. The proposed method considers the inter-event time statistics between the successive pair of events for characterizing the nature of temporal sequences and observing their relevance with earthquake epicenters and magnitude information simultaneously. This approach categorizes the long-earthquake time series into the finite meaningful temporal sequences and then applies the clustering mechanism to the selective sequences. The proposed approach is built on two phases: (1) a Gaussian kernel-based density estimation for finding the optimal subsequence of given earthquake time-series, and (2) inter-event time (Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document}) and distance-based observation of each subsequence for checking the presence of highly correlated aftershock sequences (hot-spots) in it. The existence of aftershocks is determined based on the coefficient of variation (COV). A sliding temporal window on Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document} with earthquake’s magnitude M is applied on the selective subsequence to filter out the presence of time-correlated events and make the meaningful time stationary Poissonian subsequences. This proposed approach is applied to the regional Sumatra-Andaman (2000–2021) and worldwide ISC-GEM (2000–2016) earthquake catalog. Simulation results indicate that meaningful subsequences (background events) can be modeled by a homogeneous Poisson process after achieving a linear cumulative rate and time-independent λ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda$$\end{document} in the exponential distribution of Δt\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varDelta t$$\end{document}. The relations COVa(T)>COVo(T)>(COVb(T)≈1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$COV_{a}(T)>COV_{o}(T)> (COV_{b}(T)\approx 1)$$\end{document} and COVa(d)>COVo(d)>COVb(d)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$COV_{a}(d)>COV_{o}(d)>COV_{b}(d)$$\end{document} are achieved for both studied catalogs. Comparative analysis justifies the competitive performance of the proposed approach to the state-of-art approaches and recently introduced methods.
引用
收藏
页码:19 / 37
页数:18
相关论文
共 102 条
[1]  
Aden-Antoniów F(2022)An adaptable random forest model for the declustering of earthquake catalogs J Geophys Res Solid Earth 127 826-833
[2]  
Frank W(2019)Solving groundwater flow problems with time series analysis: you may not even need another model Groundwater 57 1877-1899
[3]  
Seydoux L(2021)Time series analysis of climate variability and trends in kashmir himalaya Ecol Ind 126 1363-1367
[4]  
Bakker M(2018)The ISC-GEM earthquake catalogue (1904–2014): status after the extension project Earth Syst Sci Data 10 47-61
[5]  
Schaars F(1974)Is the sequence of earthquakes in southern california, with aftershocks removed, poissonian? Bull Seismol Soc Am 64 117-133
[6]  
Dad JM(2020)Approaches and applications of early classification of time series: a review IEEE Trans Artif Intell 1 3326-179
[7]  
Muslim M(2020)A benchmark study on time series clustering Mach Learn Appl 1 2456-15039
[8]  
Rashid I(1991)Long-term earthquake clustering Geophys J Int 104 169-339
[9]  
Reshi ZA(2021)Cl-net: Convlstm-based hybrid architecture for batteries’ state of health and power consumption forecasting Mathematics 9 15032-5495
[10]  
Di Giacomo D(2021)Ab-net: a novel deep learning assisted framework for renewable energy generation forecasting Mathematics 9 328-25