5.18–7.42 GHz LC-VCO in subthreshold regime with low power low phase noise and immunity to PVT variations in 130 nm CMOS technology

被引:0
作者
Abdelhamid Aitoumeri
Abdelmalik Bouyahyaoui
Mustapha Alami
机构
[1] National Institute of Posts and Telecommunications (INPT),STRS Lab
来源
Analog Integrated Circuits and Signal Processing | 2018年 / 95卷
关键词
Subthreshold; LC-VCO; Phase noise; Power consumption; CMOS technology; PVT;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we propose an LC-VCO using automatic amplitude control and filtering technique to eliminate frequency noise around 2ω0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _0$$\end{document}. The LC-VCO is designed with TSMC 130 nm CMOS RF technology, and biased in subthreshold regime in order to get more negative transconductance to overcome the losses in the LC-Tank and achieve less power consumption. The designed VCO operates at 5.17 GHz and can be tuned from 5.17 to 7.398 GHz, which is corresponding to 35.5% tuning range. The VCO consumes through it 495–440.5 μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\upmu$$\end{document}W from 400 mV dc supply. This VCO achieves a phase noise of -122.3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,122.3$$\end{document} and -111.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,111.7$$\end{document} dBc/Hz at 1 MHz offset from 5.17 and 7.39 GHz carrier, respectively. The calculated Figure-of-merits (FoM) at 1 MHz offset from 5.17 and 7.39 GHz is -199.7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,199.7$$\end{document} and -192.4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,192.4$$\end{document} dBc/Hz, respectively. And it is under -190.5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,190.5$$\end{document} dBc/Hz through all the tuning range. The FoMT\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_T$$\end{document} at 1 MHz offset from 5.17 GHz carrier is -210.6\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,210.6$$\end{document} dBc/Hz. The proposed design was simulated for three different temperatures (-55\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\,55$$\end{document}, 27, 125∘C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$125\,^{\circ }\hbox {C}$$\end{document}), and three supply voltages (0.45, 0.4, 0.35 V), it was concluded that the designed LC-VCO presents high immunity to PVT variations, and can be used for multi-standard wireless LAN communication protocols 802.11a/b/g.
引用
收藏
页码:67 / 82
页数:15
相关论文
共 59 条
  • [1] Oh NJ(2014)A phase-noise reduction technique for RF CMOS voltage-controlled oscillator with a series LC resonator Microelectronics Journal 45 435-440
  • [2] Hegazi E(2001)A filtering technique to lower LC oscillator phase noise IEEE Journal of Solid-State Circuits 36 1921-1930
  • [3] Sjoland H(1999)Design issues in CMOS differential LC oscillators IEEE Journal of Solid-State Circuits 34 717-724
  • [4] Abidi AA(2013)Ultra-low power, low phase noise 10 GHz LC VCO in the subthreshold regime Circuits and Systems 4 350-194
  • [5] Hajimiri A(1998)A general theory of phase noise in electrical oscillators IEEE Journal of Solid-State Circuits 33 179-909
  • [6] Lee TH(2001)Concepts and methods in optimization of integrated LC VCOs IEEE Journal of Solid-State Circuits 36 896-2712
  • [7] Fathi D(2006)More on the IEEE Journal of Solid-State Circuits 41 2703-372
  • [8] Nejad AG(2013) phase noise performance of CMOS differential-pair LC-Tank oscillators Microelectronics Journal 44 367-1332
  • [9] Hajimiri A(2003)Wideband Q-VCO using tail-current shaping based automatic amplitude control IEEE Journal of Solid-State Circuits 38 1325-1038
  • [10] Lee TH(2005)Large-signal analysis of MOS varactors in CMOS IEEE Transactions on Microwave Theory and Techniques 53 1026-1462