AI applications in musculoskeletal imaging: a narrative review

被引:0
作者
Salvatore Gitto
Francesca Serpi
Domenico Albano
Giovanni Risoleo
Stefano Fusco
Carmelo Messina
Luca Maria Sconfienza
机构
[1] Università degli Studi di Milano,Department of Biomedical Sciences for Health
[2] IRCCS Istituto Ortopedico Galeazzi,Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche
[3] Università degli Studi di Milano,Scuola di Specializzazione in Radiodiagnostica
[4] Università degli Studi di Milano,undefined
来源
European Radiology Experimental | / 8卷
关键词
Artificial intelligence; Bone neoplasms; Fractures (bone); Musculoskeletal diseases; Osteoarthritis;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 277 条
[1]  
Russell S(2015)Artificial intelligence. Fears of an AI pioneer Science 349 252-515
[2]  
Bohannon J(2017)Machine learning for medical imaging Radiographics 37 505-2131
[3]  
Erickson BJ(2017)Deep learning: a primer for radiologists Radiographics 37 2113-304
[4]  
Korfiatis P(2022)AI musculoskeletal clinical applications: how can AI increase my day-to-day efficiency? Skeletal Radiol 51 293-610
[5]  
Akkus Z(2018)Efficiency improvement in a busy radiology practice: determination of musculoskeletal magnetic resonance imaging protocol using deep-learning convolutional neural networks J Digit Imaging 31 604-624
[6]  
Kline TL(2018)Generative models: an upcoming innovation in musculoskeletal radiology? A preliminary test in spine imaging Eur Radiol Exp 2 29-473
[7]  
Chartrand G(2021)Application of deep learning algorithm to detect and visualize vertebral fractures on plain frontal radiographs PLoS One 16 e0245992-1612
[8]  
Cheng PM(2020)Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs NPJ Digit Med 3 144-108
[9]  
Vorontsov E(2021)Sanders classification of calcaneal fractures in CT images with deep learning and differential data augmentation techniques Injury 52 616-66
[10]  
Shin Y(2020)Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach Eur J Radiol 133 109373-1380